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REPORT 1188

ON THE USE OF THE INDICIAL FUNCTION CONCEPT.

MOTIONS OF WINGS AND WING-TAIL

By MUBEAYTOBAK

SUMMARY

The concept of indkiul aerodynamicfun.dti h applied to
the andyeis of the short-period pitching mode of aircrafi. By
i!h use of simple physimi? rei2ztion8hip8wociated with the
i71diCi&jU~ti07LConcept, quulitutwe 8hUi?’iA?$are 7nA? qf the
8eparate e$ects on th dumpi~ in pitch of changes in Mach
numb, aspect ratio, plan+rm shape, and jlequency. The
concept ti further shown to be of due in ckpii%ng physically
tie induced e~ectaon a tail &ace whichfollows in the wake of
a starting forward surface. Considerable eJort is o?emtedto
i!hedevei’opntenlof tlkoretical i%chnm whereby the i!ramient
reqome in lift at h tui.1i!Qthe wing wake may be t@kz+ed.
Numerical rauh%for seoera-1repremntatwecaaesaTeprtxwnted,
and tlwseare analyzed to reaxsexsthe imporhvnceof the contri-
bution to the rotary damping moment of the interference lift at
the tail.

INTRODUCITON

In the classical study of the longitudinal motion of an
aircraft, it is usually found that the motion resulting from a
small equilibriumdestroying disturbance consists of two
modes: one, a lightly damped, low-frequency motion at
essentially constant attitude, called the phugoid oscillation;
the other, a rotary-pitching and plunging oscillation of high
frequency (relative to the phugoid frequency) called the
short-period oscillation. The phugoid o+llation has gen-
erally been dexribed as resulting bm a slow interchange of
potential and kinetic energy as the aircraft experiences
periodic variations in airspeed and altitude. The character
of the phugoid motion as influenced by airspeed, altitude, and
aircraft geometry has been well understood for some time
(see, e. g,, ref. 1). The short-period motion, on the other
hand, having in the past been found to be highly damped and
of short duration, haa been the cause of no concern. Its
chaxackmisticatherefore have not been as fully investigated
as those of the phugoid oscillation. & flight speeds have
progressed to the transonic and supersonic domains, however,
the loss of rotary damping occurring in practically all aircraft
at speeds near the sonic speed has caused renewed interest
in the short-period pitching mode. Unlike the easily ccm-
trolled phugoid oscillation, the deterioration of damping in
the short-period mode is of serious concern to the pilot, since
the period of oscillation can be of the same order of magnitude
as the pilot’s reaction time. The oscillation may therefore
be diflicult or even impossible for the pilot to control man-
ually. Furthermore, the additional load imposed upon the

IN THE ANALYSIS OF UNSTEADY

COMBINATIONS

airframe due to a rapid growth of the amplitude of a nega-
tively damped oscillation makes possible the occurrence-of
structural failure. It is therefore of considerable interest to
obtain an understanding of the nature of the shofiperiod
mode, parallel to that which has been gained of the phugoid
mode.

One means of viewing the aerodynamic phenomena occur-
ring during the short-pexiod oscillation horn a fundamental
standpoint is through application of the concept of indicial
functions. h this approach, the variations with time of the
aircraft angle of attack and angular velocity are replaced by
a large number of small instantaneous or step changes. The
transient aerodymunic reactions to these step changes are
termed ‘Sndicial functions” and have been calculated for
several clasaes of isolated wings (refs. 2 to 6). By suitable
superposition of these results (refs. 7.to 9) the aerodynamic
forces and momenta caused by the given maneuver can be
studied. It will be the primary purpose of this report to
make such a study for the simp~ed case of an aircraft per-
forming singledegree~f- freedom rotary oscillations, a ma-
neuver which corresponds to the short-period oscillation when
the plunging velocity of the aircraft is zero. To effect this
end systematically the report is organized in two main cate-
gories: First the motion of a tailless aircraft is studied, and
here existing theoretical information and the use of simple
physical relationships associated with the indicial-function
ccncep t enables qualitative studies to be made of the sepa-
rate effects on the aerodynamic forces and moments of
changes in Mach number, aspect ratio, plan form, and fre-
quency. In the second part, the motion of a tailled aircraft
is studied, again by use of the indicial-function concept.
Here, however, additional theoretical information is required
to account for the interference effect of the wing and its
wake on the transient lift at the tail, and several sections are
devotid to the development of theoretical techniques where-
by this eflect may be catimated. Results of computations
based on these techniques are analyzed, and the importance
of the contribution of the interference lift at the tail to the
rotary damping moment is m-established. k all of the
above work, the aerodynamic forces and moments are those
derived horn analysea of the linearized equations of potential
flow. Thus, the usual limitations imposed by the linear
theory on the applicability of the results are in force here
as well. However, in a somewhat different vein of inquiry,
a fial section is devoted to consideration of a problem in
aircraft dynamics involving forces of nordinesr character.
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The effect on the rotary damping moment of an aerodynamic
restoring moment containing a common type of nonlinearity
is studied, and conditions are pointed out under which the
development of a self-sustained rotary oscillation may be
possible.
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NOTATION

b’
aspect ratio, —

s

lift cceiiicient, #J
.L-

pitching-moment coeilicient,
pitching moment

%SZ
moment of inertia
imaginary part

free-slrecm Mach number, ~

real part
wing (or tail) area
flight speed
speed of sound in free stream
wing (or tail) span
local chord
wing (or tail) root chord
forward wing mean aerodynamic chord,

J
2 ‘J’flOCd chord)’ dy
z.

two-dimensional lift coeiiicient, ~

base of natural logarithms ‘“
~..

reduced frequency parameter, #-
0

distance between moving vortex and leading edge
of tail

slope of wing (or tail) leading edge
local loading (pressure on lower surface minus

pressure on upper surface)
angular velocity due to pitching

.,
free-stream dynamic pressure,~ POV02

a$
time
time required following an instantaneous change

in angle of attack or angular velocity for the
transient lift or moment to attain steady state

w

z=

Z)g

Z,y,z
x=.*.

Z.

Ax.

a

B

P

@

A@

e

v

Po

co

u=

perturbation normal velocity in plane of wing or
tail

averaged dowmvaah in the plane of the tail due to
steady angle of attack of forward wing

averaged dowmvaah in the plane of the tail due to
steady pitching velocity of forward wing

Cartesian coordinates
distance hm leading edge of M.A.C. to aero-

dynamic center
distance from leading edge of M.A.C. to axis of

rotation
x=.~.—x~
angle of attack of wing center line with respect to

free-stream direction (fig. 1)

m
distance traveled, measured in half M.A.CL

lengths, subsequent to an instantaneous change
“ 2v#

in angle of attack or angular velocity, ~

perturbation velocity potential
jump in perturbation velocity potential in plane

of wing or tail
angle of wing center line with respect to horizontal

axis (fig. 1)
acute angle between wing plane of symmetry and

trailing edge (fig. 15)
free-stream density
angular frequency of oscillation
distance traveled, meaaured in half M.A.(Y.

lengths, in the time interval <, 2V&/Z

When a, L+,and g are used as subscripts, a nondimensional
derivative is indicated, and this derivative is evaluated as
the independent variable (a, 6, or q) approaches zero. I?or
example,

PART I—ISOLATED WINGS ~

APPLICATION OF INDICIALFUNCTIONS TO THE AERODYNAMIC THEORY OF UNSTEADY FLOW’S

One of the most useful tooIs in the study of unsteady
flows is the concept of indicizd aerodynamic functions, which
may be deiined briefly as the aerodynamic response of the
airfoil as a function of time to an instantaneous change in
one of the conditions determining the aerodynamic properties
of the airfoil in a steady flow. Theoretical aerodynamic
indicial functions were iirst derived by Wagner (ref. 2) for
the two-dimensional wing in incompressible flow. More
recentiy, these results have been extended to cover the com-
pressible case for both subsonic and supersonic speeds (refs.
3 and 4). In addition, theoretical indicial functionz have
now been obtained for both wide and slender triangular

W@S and rectiw whxgs, all for supersonic speeds (refs.
4t06).

The indicird function derives its usefuhmw primarily
through the ease with which it lends itself to the powerful
and well-established methods of the operational calculus
(refs. 7 to 9). Wi@ the use of these methods, the aerody-
tic forces and moments caused by arbitmuy motions of
the airframe can be studied from a fundamental standpoint.
Because of the wide range of applicability of this means of
approach in unsteady flow analyses, a considerable portion
of the succeeding discussion is devoted to the fundamentals
involved.
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DEFINITIONOFCOORDINATESYSTEM

In the succeeding analysis the stability system of axes is
used. The origin of the coordinate system is placed in the
airfoil so that they axis ivhich is perpendicular to the vertical
plane of symmetry is coincident with the axis of rotation of
the airfoil; the positive branch of the x axis is pointed in the
direction of flight; and the z axis lies in the vertical plane of
symmetqy, positive downward. The angle of attack a is
measured as the angle between the chord plane of the airfoil
and the w plane, and is shown as positive in figure 1. The

*

x

FICIUEEI.—Definition of coordinate system.

/–Flight path

/-

Angle of pitch = 8
Angle of attack= O

Here a and e are equal, so that the maneuver is defined by
one variable, the time history of either a or 6. Let the angle
of attack -be a and the angular velocity be q (q= G?6/d#
=da/dt’). At any instant, the normal velocity at any
point on the airfoil surface is composed of two parts, one
due to the instantaneous angle of attack aVO, the other due
to the angular velocity at the same instant –qz (see @. 3).
These me two of the instantaneous boundary conditions of
the unsteady flow.

Solutions for the aerodynamic forces and moments which
correspond to these bound~ conditions may be derived by
a number of methods involving various degrees of appro.si-
mation. In succeeding sections, the use of the concept of
indicial functions and the principle of superposition for this
purpose will be illustrated and compared with other current
widely used methods.

CONCEPTOFINDICIA.LFUNCTIONS

In order to illustrate this concept, assume that the airfoil
under consideration has been flying a level path at zero angle
of attack. At some time, which is designated time zero, the
wing is caused to attain simuhimeously a constant angle of

3

,/-Ftight path

/
/

-+

Angle of pitch ❑0
Angle of ottack= c

FIQUEE2.—Maneuvere aorreponding to purely (a) angle of pitah and (b) angle of attmk variations.

angle of pitch 0 is the angle between the chord plane of the
airfoil and the horizontal plane (an arbitmuy reference) and
is also shown positive in iigure 1. Forces are measured as
positive upward, wheress pitching moments arepositive when
tending to increase the angle of pitch in the positive direc-
tion. When the airspeed V. is constant, which corresponds
to the condition under study, the translator and angular
motions of the airfoil with respect to any system of coordi-
nates are defined if the time histories of the angle of attack
a and the angle of pitch 0 and their derivatives are known.
For purposes of clarity, two diflerent harmonic motions of the
aircraft are shown in figure 2, illustrating the difference
between a flight path which involves a constant angle of
attack and a varying angle of pitch and one which involves
a constant angle of pitch and a varying angle of attack.

Now consider the case of a wing executing harmonic rotzry
oscillations about the y axis while the origin of the coordi-
nate system traverses a level path at constant velocity Vo.
This case corresponds to that of a wind-tunnel model
mounted to permit single-degree-of-freedom rotary oscilla-
tions, or to the short-period mode of an aircraft in flight
when the plunging velocity of the center of gravity is zero.

31J8G5P5~5

&q .4’
Normal velocity ha due to

angle of attock U-———-——— , -L
~ ,x

\

v “~Normal ve]ocity-q.x due to an(lulor

velocity q

lhGmm3.—Unsteady flow boundary conditions at airfoil surface.

attack a and angdar velocity g. ‘l%e normal velocity of the
flow next to the surface of the airfoil therefore changes dis-
continuously from zero to a pattern that is constant with
time and identical in shape to the pattern shown previously
in figure 3. The lift and pitching moment that result are of
a transient character and attain their steady-state values
corresponding to these new boundary conditions only after a
significant ini%.rvidof time has passed. It should be noted
there exists an essential diflerenee between the length of this
time interval at subsonic and supersonic speeds. At super-
sonic speeds, the vorticity shed into the airfoil wake cannot
influence the flow about the airfoti-but at subsonic speeds this
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influence exists for all time. The result is that the lift and
moment reach steady-state values in a iinite time at super-
sonic speeds but approaih these values asymptotically at
subsonic speeds. In eithercase, however, the time responses
in lift and moment to the step changes in a and g are termed
“indicifd functions.” I?igure 4 illustrates typical subsonic
and supersonic indicial lift responses to a step change in
the angle of attack.

a a

, 0 f’

%

(co) )

o

FmUFLS4.—Typical indicial lift qons~ to step changesin angle of
attack.

It is obvious that the time history of the wing motion
during a short+pexiod oscillation may be broken down into
an in@ite number of irdinitesimally small step changes in
the angle of attack and step changes in the angular velocity.
The summation of the indicial lift and moment for these
steps then yiel& the total lift and moment at any prescribed
time. In figure 5, the mechanics of the procedure are
illustrated for an arbitrary angle+f-attack variation. Here,
the given rmgle+f-attack variation is replaced by a number
of small step changes. Within each step the corresponding
response in lift is shown plotted for convenience. It is then
apparent that the total lift at time t’isequal to the sum of
the increments of lift in each step at time t’. As indicated
by the leaders, however, it is clear that the increments of

a

o

p.-’ J “
FIQURE5.—Illustrationof swemosition DIWWSS.

lift for the various steps at time t’are equivalent to incre-
ments in the first step at time t’—~. Altermtivoly, then, the
total lift at time t’ can be written m

.CL(tg=CL=(t’)~O) +: C~a(t’–ti ~ (@ti (1)

After a transformation of variables, t’–t{=T and letting tho
increment of time approach zero, equation (1)can bo re-
written in a form of Duhamel’s integral (see, e. g., ref. 9)

J
G(t?=$ orCL*(r)a(t’– ~)d7 (2)

A similar procedure is carried out for the angular velocity
variation, whereupon the total lift coe5cient at the preacribcd
time f becomes

J
cL(q=& ~ti CL=

J
d “ CL$.) ~ g(t’–r)d~(~)a(t’–~)d7+z , (3)

It should be pointed out that in this form equation (3) is
applicable to the analysis of arbitrary motions, tho only
restriction being that. the flight speed is constant. In tho
following sections, however, the ripplication of equation (3)
is restricted to harmonic motions having a single degreo of
freedom. The reasons for this restriction me two-fold:
tit, the motions of a statically stable aircraft in response “
to a disturbance are most genemlly of a harmonic nature;
and second, such a restriction permits an assessment of tho
influence of the time rate of the airfoil motions on tho
aerodynamic forces and moments.

APPLICATIONOFINDICIALFUNCTIONSTOHARMONIOPITCHING
OSCILLATIONS

Consider first a pure sinusoidal pitching oscilktion, tho
angle of attack being zero throughout the motion. Tho
flight path for such a motion has been illustrated in figure
2 (a). In this case, the angle of pitch is given by

e(#)=&&~”~’

where t?ois the mtium amplitude of oscillation and u is
the angular frequency. The angular velocity is, of courw+
g(t’)=ti=tiOOe ‘“ti=i@t’). Inserting the value for g(t’)
in equation (3) and performing the indicated operations,
there results -

Note in figure 6 that CLO(,) is equal to dLo(t’)–1’2(r),

and that F2(7) approaches &ro as 7 approaches t;.

Replacing CLa(T)in equation (4) by this equrdity,,

I?or subsonic speeds, let t’approach infinity.
substitution, equation (5) thereby represents the

(6)

With this
lift coeffi-

cient due to ‘th~harmo~c pitchi& mo~ion nfter the trmsiont
loading subsequent to the start of the motion has renched
a steady periodic variation. Then separating equation (5)
into components in phase (real part) and out of phase. .
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I
~ “~

Fmmm f3.-Definition of the function F,(,).

(imagimwy part) with 0, there is obtained

(6)

Introduce the nondimensional pmameters,

fiT7Z\’.
~=T r number of half M. A. C. lengths traveled in time ~

~ reduced frequency.k=2vo

In terms of these parameters,
<1,

equation (6) becomes, for M.

.

+)=’f’F’@cOs”@
~F(%)=’[c’.(o)-kJmF’(’’tink”d’“IJ

At supersonic speeds, equations (7) may be simplified
somewhat since the build-up in lift is completed in a finite
number of half M. A. C. lengths of travel u=. Ii equations
(7), therefore, the upper limits of the integrals may be re-
placed by a=,since beyond that point FJq) is identically zero.

Rp(%)=pP2(’)cOsk’”
V2-U.

-ii.> 1
(8)

‘po(%)=kF’.(”J-kb’(’)shk’d’IJ

Thus it appear%from equations (7) and (8) that there are
both in-phase and out-of-phase lift forces associated with the
harmonic pitching oscillation. Notice, however, in equations
(8) that if the trigonometric terms are expanded and the
reduced frequency is required to be small compared to unity
(corresponding to the frequencies encountered in dynamic
stability work), terms containing second and higher powers
of k will be small compared to iirst-order tams. Thus, for

ow frequencies, the only forca of consequence during the
]itching oscillation is the first order in frequency out-of-phase
ift force, ikOCLJuJ.l The phase relationships for the
mrmonic pitching oscillation are indicated in figure 7. It is
n-ident that the total lift leads the angle of pitch by nearly
10°.

APPLICA’IXONOFINDICfALFUNCYIONSTOHARMONICPLUNGING
OSCILLATIONS

Next, consider a purely sinusoidal variation of the angle of
zttack, the angle of pitch being zero throughout the motion.
The flight path for this motion has been illustrated in figure
2 (b). Here, a equals a~ied, where, as previously, ao and
N are the maximum amplitude and angular frequency,
respectively. Applying equation (3) again,

I
ik8

‘kec’$u”k---l-l

FIQIJRE7.—Phase relationshipsfor harmoniopitohing osailkition.

J

t?
=i(oa(tg CL=(7)e-’””d7+aoCza(t~ (9)

Q

Now, as in the previous example, let C~=(r)=C~Jt’) –F1(T)
so that equation (g) becomes

C“(t’)=a(t’)CL~(t’)-tia(t’) J’” F1(7)e-i”’d~ (lo)
0

Again, introduce the nondimensional parametem p and k,
separate equation (10) into its red and imaginary parts,
and let q approach infinity for subsonic speeds and u=for
supemonic speeds. There results,

x==, il!L<l

I

(11)
A=u=, Mo>l

I.P. (~j=–k f~ F,(p) ‘0S kpdp I\ et/ Jo J

1Tbfs quantityls,of mum+ the sameUftformin pbnsewltb tbe pltchlngvelordtywbfcb
w’orddoccnralonehad the W@ bm ex~tlng asteadytnm (gmnstant). Oneof the obkf
advantagesof the IndfekdrESMn.wmetiwi at least for supei%mfomeal% k tbe ESSOwfth
whfohtbe relativefmpertanmof thevarfonstermsmntzibutlngto the totallift andmoment
canbouWs3i endtk3sem’a?9of tbe importantmnhibutfons ldentftled.
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Notice in equations (11)for supersonic speeds that when the
trigonometric terms are expanded for the low frequency
case, as was done in the previous example, there appears an
in-phase term of zero order in k, d&=(U.), and an out-of-phase

J
term of fit order in k, —ika ““ F,(@) d@. These, then, are

the principal contributions to” the lift forces for the low-
frequency angle-of-attack variation. The phase relation-
ships for this motion are shown graphically in figure 8. For
this case, it is evident that the total-lift force can lag behind
the ~le of attack because of the negative out-of-phase

contribution, +ka
J

‘= ~,(p) COS k~.
0

ika

A

&L(totol)

Fmmm &—Phaserelationshipsfor harmonicplunging oscillation.

APPIJCATIONOF INDICIALFUNCTIONSTOHARMONICROTAEY
0SCZLLATION8 ~

Finally, consider the case of harmonic gotary oscillations.
Here, as previously mentioned, the normal veloci@ over the
wing surface is composed of contributions from both the
angular velocity and the instantaneous angle of attack, so
that the complete expression in equation (3) must be em-
ployed to obtain the total lift. Eowevm, for siugledegree-
of-freedom rotary oscillations, a equals 0 and & equals ~ so
that in this wise the separab expressions given for the
hmmonicdly pitching wing (eqs. (7) and (8)) and the
harmonically plunging wing (eq. (11))can be combined to
give the total lift for a wing executing harmonic rotary
oscillations. Thenj adding the results of equations (7), (8)
and (11), the in-phase and outaf-phase components of the
total lift become

A=m, N<l

‘2.(%)=kP’Q@)-kIF’(’’shk”d’-r(’)cOs”*l*l
(12b)

The phase relationships for the rotary oscillation may, of
muse, also be obtained by directly adding the results given
in figures 7 and 8. The remdt of this addition is shown in
figure 9.

ika

t

.— -—.

“’~-{c%(’’-kfi+’”’+’+)+)

FIGURE9.—Phaserelationshipsfor harmoniorotary oscillation.

It will be noted m figure 9 that the total-lift force can eithm
lag behind or lead the angle of attack, depending on the
relative magnitudes of the three terms comprising the
out-of-phase lift. The tital lift is shown lagging behind tho
angle of attack in figure 9, which situation, for axis positions
ahead of the point of concenhation of the total lift, gives riso
to the possibility of the development of divergent rotary
oscillations.

Again, the complete frequencydependent equations for
the total lift of a wing in supemonic flow due to the rotary
oscillation (eqs. (12), A= UJ may be reduced to first order
in k for the low-frequency case in the same manher as wm
described in the two previous examples to give

R.I’. ~ =CL (oJ
() a .

lp.(:)=’[c’Q(”J-fF’(”)d’l

(13)

For all thres examples, the same procedure may, of course,
be used to obti the pitching-moment coefficient. Only
the pitching-moment equations for the rotmy osc$ation me
presented below, since the correspondence between the lift
and moment equations is obvious. For the rotary oscilla-
tion case, then,

BP. (:)=u..@)–kJ’ ~s(ff) Sk kqw+
0

J
~ AF,(q) COS kpdp

0

A= m, M,<]

A=ua, MO> 1

‘F-(%)=kP”.@’-kP’(’’td’’d
J 1

~F&) coskp&o
0

where, as previously,

F,(p) =GL=(N –o%(w)

and
F’(p) = C@) –Cma(fo)’

(14)
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Again, reducing equations (14) for supersonic speeds (x= UJ
to first order in frequenW, there results

The complete frequencydependent equations for the lift
and pitching-moment coefficients for the rotmy+scillation
cam (eqs. (12) and (14))describe completely the aerody-
namic forces and moments resulting from the single-degree-of-
freedom pitching mode. For the purposes of the present
discussion, however, it is sticient to limit consideration to
tho simpler first order in frequency results of equations (13)
and (15). The significance of the eilect of the higher order
terms on the out-of-phase pitching moment will be examined
in a later section of this report.

With regard to the fit-order results for the supersonic
lift and pitching-moment coefficients, it is instructive to

note that the quantities
s J

“%’, (p)dp and “%’,(p)dw in

equations (13)and (15)are r~presented geomet&ally by the
areas of the shaded portions of figure 10.

c
ma

(a) (b)

JFIQUEE10.—Geom&ric reprwentation of the functions ““F1(#)d+ and
0

J
““ F,(+)@.

o

The xnrmnerin which theqe areas are atlected by variations
in Mach number, aspect ratio, plan-form shape, and &e-
quency will be used as a guide in later sections of this report
to determine the significance of these parameter-a.

In the foregoing discussion, no mention has been made of
reducing tho complete equationa for the lift and moment
coefficients at subsonic speed (eqs. (12)and (14),A= m) to
firstorder in frequency as was done for the equations noted
os applying at supersonic speed. It is evident that if the
same procedure had been applied for subsonic speeds, the

s

m

areci corresponding to the term .FI(P)dq can either be

finite or u become infinitely l&e, depending on the
mrmner in which the indicial lift function Cz=(p) approached
its steady-state nsymptote as q+ cu. In the latter case,
there tstiststhe interesting anamoly of an inlinite out-of-phase
lift force as the frequency approwhcs zero. As cambe seen
from the results of reference 4,such will be the case for the
two-dimensional wing. This result as the frequency ap-
proaches zero is not peculiar to the indicial analysis alone,
but has been pointed out by a number of authors using
diilerent approaches. & indicakd by Miles in reference 10,

however, the anamolous result can be considered to be rL
consequence of assuming a two-dimensional flow, and there
is reason to believe that the dif%cnl@ as the frequency
approaches zero will not exist for fl.nit~span wings.

As has been mentioned previously, the use of the character-

istic areas
J

“%’,(q)dp and
J

“aF3(P)dP will be shown to be of

considerable” value in est”bating the damping-in-pitch
characteristics of wings at supersonic speeds. For the two-
dimensional wing at subsonic speeds, the singularity as
k+ prevents the use of such a simplified approach without
further study. However, rather than return to the use of
the full frequency-dependent equations ((12)and (14)),the
reduction of the equations for the out-of-phase lift and
moment to fit order in frequency will be made in such a
manner as to preserve the signiiicrmce of these areas. To
accomplish this end, equation (12b) is reconsidered. It is
evident that the first integral in equation (12b) may be
discarded, since its contribution to the out-of-phase lift is of
third order in frequency. The second inte.gal is divided
into two part9:

J

.
F,(q)cm /l@p=

J
%,(p) COS kqdp+

0 0

J
~:~,(yj COS kqx@ (16)

where ~ is chosen such that Fl(w) is close to zero. The
first integral in equation (16),being bounded, then causes no
difficulty. Espanding the trigonometric term and retaining

only the first term in the expansion, there results
s

%++i$o,

0

which is the characteristic area out to the point ~. Now
for large values of yJ,F*(p) is approximated in reference 4
by

where the values of p, a, and b are dependent on Mach
number, and are given for MO=O, 0.5, and 0.8 in reference 4.
Inserting this quantity in the second integral in equation
(16),we have

Performing the indicated integrations in equation- (17),
there is obtained a term, @/a+w, from the second integral,
and a term, —gCX[k(a+ w)] from the ‘fit integral. I’or
small values of the argument, the cosine integral is approxi-
mated by (see ref. 11),

G$[k(a+w)] =ln[~k(a+m)l

k((z+%)~O

where ‘r is Euler’s constant, 1.78107. Then, through the
first order in frequency,

lp(%)=kF’Q(m)-rF’(’)d’+a(’’k)l ‘l’s)
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where

{
(3(91,k)= @n[’Yk(a+qJl-*

}

The oukof-phase moment for pitching about the leading edge
follows from the above development, ‘with the added result
of reference 4 that for large values of p,

Then, through the first order,

Thus, after fising W, choosing a (small) value of k, and
computing ~(q, k), the tite areas corresponding to the

terms —
J

“]F, (P) C&Yand –
J

‘1.F3(q) dp canbe assessedin the
0 0

same manner as will be done for the tipersonic case. The
advantages of such a procedure will be evidemtlater.

CORRESPONDENCEBETWEENINDICIALLIFTANDMOMENTANALYSIS
ANDOTEERMETHODS

Before proceeding further with applications of the indicial
response method, it is appropriate to discuss the relationship
of this approach to other widely used methods.

Following the fundamental papers of Bryan and Routh,
which introduced the basic differential equations of motion
of rigid bodies and their stability criteria, the historical
development of the theory of longitudinal motions of an
aircraft evolved separately in two fields of research: dynamic
stability and flutter. Workers in the dynamic stability
field soon found that the longitudinal oscillations of a rigid
aircraft in flight were generally of small reduced frequency.
On this basis, the constants due to th aerodynamic proper-
ties of the airframe which appear in the d.iilerentialequations
of motion were considered to be independent of frequency.
As a first approach to the problem of obttig the necessary
aerodynamic coefficients analytically, the instantaneous

normal velocity distribution at the surface of tho airfoil was
assumed to be constant with time. The aerodynamic forces
and moments arisiig from the fixed boundary conditions
were then calculated using steady-flow theory. Later, this
assumption was realized to be an over-simp~cation for the
case of wing-tail combinations and an additional term, essen-
tially correct to the first order in frequency, was added which
accounted for the lag in the tail pitching moment caused by
the time required for the vorticity discharge from tho wing
to reach the tail (seeref. (12)). Since at low speeds the pitch-
ing moment of the tail far outweighs all other contributions,
the results from steady-flow theory togethm with the term
accounting for the vorticity lag satisfactorily predicted the
dynamic longitudinal motions of wing-tail combinations,
and it was concluded that the major aerodynamic offocts
had been taken into account. In recent years, however,
numerous authors @ particular, llf.iles; see, 0. g., mf. 10)
have pointed out that the above-mentioned theory ovorlooka
important contributions to the aerodynamic forcos and
moments which, though still within the first order in fre-
quency approximation, arise from timedepondmt boundmy
conditions and must be calculated from unsteady-flow theory.
It has been shown by these authors that with proper inclusion
in the equations of motion of these coefficients, tho deteriora-
tion of damping in the short-period mode actually occurring
for aircraft flying at speeds near the speed of sound can be
succedully predicted. The consequences of the assump-
tions involved in the classical dynamic-stability theoly will
be more evident from a brief review of the equation of
motion and boundary conditions for the singlo4egroe-of-
freedom rotary oscillations of a rigid wing flying at constnn~
supersonic speed. At the very outset, the assumption is
generally made that the aerodynwnic reactions to the motion
of the airhme depend only on the angular position and
angular velocity and not upon angular accelerations or higher
time derivatives. The equation of motion for the clmngo in
pitching moment following a displacement from an equilib-
rium position is then written in the form of a powm sorios
in a and &

It should be remembered that for.the rotary-oscillation case,
the airfoil is subjected to changes in both angle of attack a
and angular velocity g, and that these motions produce
normal velocity patterns at the airfoil surface which are
different in character. Thus, although for the single-degree-
of-freedom case, & and q are equal, nevertheless their sep-
arate effects must be considered and it is therefore necessary

Ne.x%,if it is a.ss&&l that the rno”me& are linearly de-
pendent on their respective mriablw, the second and higher-
order terms in ,equation (19) may be discarded and the re-

(19)

maining partial derivatives considered as constants for the .
given wing. There remains, thefeforo, a linear second-order
system with constant coefficients. In order to calculate the
coefficients (termed stability derivatives) theoretically it be-
came necessaW, for lack of more refined theoretical methods,
to amume that the instantaneous normal velocity of the flow
at the surface of the wing was fixed with respect to time.

Thus, the partial derivative -/~vO1 could be calculated

as the pitching moment due to a constant pitching rate,
that is, Cm$ua), while the derivative 20@K becomes the
pitching moment due to a constant angle of mttnck,that is,
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C.a(u=). As a consequence of iking the normal velocity
pattern in time, however, it was necessary to assume that

the derivative
M?.

a(&z/2Vo)
was zero. There was therefore no

possibility for this theory to predict the occurrence of dy-
nnmic instability for a wing alone, since the only damping
term remaining is CLQ(UJ,which is always stabilizing. When
the restriction of constant normal velocity with time is lifted,
however, the awumption is then made that the stability
derivatives in equation (19)may be calculated separately
by fixing each of the independent variables a, ~, and g in
turn with respect to time. The derivatives OJUJ and.

C.a(aa) thus remain unchanged, but the derivative ~(&~~~VO)

(or C.a) can now be included ud dc~ated as the ~i~~g
moment duo to a constrmt vertical acceleration, &T~.. It
should be emphasized that while CLq(uJ and C.=(UJ may be
calculated from stendy-flow theory by virtue of the assumed
invariance with time of the normal velocity pmttern, C~&
must be calculated from unstendy-flow theory since for con-
stant & the angle of attack vmies linearly with time, as does
the normal velocity of tho flow at the surface.

It is clear that since the stability derivatives in equation
(lfJ) me assumed to be independent of the frequency, tie

result for the aerodynamic pitching-moment coefficient is
thereby limited to one that is correct only to the first order
in frequency. For the case of singledegree-of-freedom
harmonic rotary oscillations, then, the in-phase and out-of-
phase components of the total aerodynamic pitching-moment
coefficient, correct to the tit order in frequency, become

()R.P. ~ =CmJSo)

() }

(20)
I.P. ~ = k[C&zJ+ CJUJ] .

a

“ By comparison with the fit-order in frequency ‘result from
the indicial response analysis (eq. (15)), it is evident that

the two results are identical if the quantity —
J

8: F,($o)dp

can be shown to be equivalent to Cm.&(UJ.To ~how this
equivalence, consider a wing, initially m level steady flight,
which is suddenly forced down with constant vertical -accel-
eration &TTo. As seen in figure 11,the angle-of-attack vari-

.——.

dh
7=tivof’ -I df

I

ation in this case is a=&Y, where & is a constant. Then
applying the counterpart of equation (3) for the pitching
moment

Inserting a(iY–T) =&[t’–T],and performing the indicated
dii7erentiation,

J
Cm(t’)=& “Cina(r)dr

0

Now replace C~a(r) by C~=(t’)–F?(T) and let t’ be greater
than t:.

Then

J

/:
C=(t’) =a(t’) C==(t~ –& F,(r) dr

0

and nondimensionalizing, by replacing t’and ti by @/2V0
and ?vJ2 V., we have,

.-

.s

“aF,(p)&Cm($o)=aw..(d-%o~ $O>LT=(21)

Thus, the pitching moment proportional to the constant
vertical acceleration parameter &Z/2V0, whi& is synony-
mous with the definition of the stability derivative C~&,is
found to be equivalent to the pitching-moment contribu-
tion due to& for the first order in frequency rotary-oscillation
case.z Therefore, the results of the indicial response method,
whan reduced to the first order in frequency for supersonic
speeds, are identical to the results from the familiar fib
order theory used in dynamic stability work.3

Workers in the field of flutter, who were concerned with
frequencies many times those encountered in dynamic-
stability analyses, required theoretical information showing
the behavior of the forcw and moments as Mected by the
frequency of oscillation, and thereforo discarded the firak
order theory for more precise methods of analysis. One of
the most useful of these has been the “oscillating potential”
theory, which is based on solutions of the time-dependent
linearized equation of compressible potential flow for the
case of harmonic motions. The in-phase and out-of-phase
lift and moments are thereby determined, generally as
functions of powers of the reduced frequency, aspect ratio,
Mach number, and position of the axis of rotation. The
application of this method, which developed in this country
primarily as a result of Theodomen’s work for incompressible
flow (ref. 13) has recently produced a number of useful
papers covering a wide variety of wings at supersonic speeds
(see, e. g., refs. 14 to 18). It has been shown by a nornber of
authors, in particular, Garri&, in reference 7, that through
the use of superposition methods the results for the aero-
dynamic coefficients obtained from the oscillating potential

~By the mme PrwsdamthestabllftyderivativeCL&(U.) can be 6bOWJItob Woftimt

Jc.
to tbe term – F160)dw

JNotim In .&ion (21) that If U. k mplacwl by fnllnlty,the rescdtdapplytomkeanfo

SW@. Forthetwo-dfmenafonalwing,theamlm ~ C%&md– fmww! then
I I

0 I (0) I(f’J z I #vcs only tbe Prevleuslymmtlmd 3bwIlarltY at fmlnfty m k+. H tbi”- ~d-
.m

FIQURE1l.—Flight path cormponding to sudden uniform normal
acceleration&V*

,

@ toJ““Fa(q+)dpTam 1111%bowover, the onoloxy ~otid be w@Y osef~fm =JJWo
.

es well83mpEmonlosflE3d3.
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theory are wholly compatible with those of the indicial
response method applied to harmonic motions (eqs. (12)
and (14)).

Thus the indicial response method may be applied with
equal validity to problems in both the fields of dynamic
stabili~ and flutter. In many cases, however, application
of the specialized approaches mentioned above may result
in greater economy of effort. The chief virtue of the indicial
response method is that it represents a fundamental ap-
proach to the problem of unsteady flow, and affords valuable
insight into thephysical nature of the aerodynamic phenomena
taking place.

PHYSICALCONCEPTSRELATINGTOTHEINDICLULOADING

It has been shown that for even small hquencies, the
pitching moment of an airfoil in harmonic rotary motion
can lag behind the angle of attack of the airfoil. The mag-
nitude of the lag depends on the character of the indicial
response to a step change in angle of attack. It is therefore
of interest at this time to re-examine the physical nature of
the flow that contributes this lag.

Consider first the lift and moment at the instant the angle
of attack changwj assuming that previous to time zero, the
wing has been flying a level path at zero angle of attack.
At t’=0, the wing begins to sink, without pitching, with
constant downward velocity aT~o while maintaining its
forward velocity. The angle of attack therefore changes
discontinuously from zero to a constant ~ At the same
instant, the step change in angle of attack causes the emission
of a compression wave from each point on the lower surface
of the wing and expansion waves from points on the upper
surface. In the infinitesimal time during which the starting
action occurs, each section of the wing experiences the same
impulsive force, and by equating the impulse to the momen-
tum transmitted to the mass of fluid affected by the starting
waves, the starting lift coefficient can easily be derived as
4a/MO (see ref. 3). During the infinitesimal starting time,
the pressure disturbances from the edges of the airfoil,
propagated at the speed of sound, travel an insignificant
distance and do not influence the remainder of the airfoil.
The lift coefficient is therefore independent of the wing plan
form. This remarkably simple result for the starting lift
coefficient, which is valid for both subsonic and supersonic
speeds, is thus dependent solely on the-flight h~ach number.
The starting pitching moment follows directly from the
above result, since by virtue of the uniformi~ of loading the
aerodynamic center is located at the wing centroid of area.

For values of time greater than zero, however, the situ-
ation differs radically for the supersonic and subsonic speed
ranges. Consider tit the supersonic case. As time passes,
the spherical sound waves emitted at t’=0 grow in size
with radius aJ’. The wing, however, is moving forward at
a faster rate than the rate of grmvd of the starting sound
waves and thus begins to emerge from the influence of these
waves. This is shown schematically in figure 12. ~Tote in
fig. 12 that the wing move9 away from a coordinate system
that is iixed in space at the original position of the wing
leading edge.)

P----- Leading edge at ~~ ~~

,“
*/’

/

edge

edge

at
at

t
x

FMWRD 12.—Re1ationof wfng pasition to starting saund wows for
supersonicspeed.

At t’=0, the starting waves just cover the wing and tho
loading is uniform as described previously. At t’=tj, tho
starting waves have grown in radius and the wing has begun
to emerge from their influence. On that portion of the wing
which has emerged, region @ in figure 12, the loading has
alrwdy reached its steady-state value. AToticethat in this
region the characteristic tip Mach cone has already formed,
OR the portion of the wing uninflu&ed by the starting
waves from the edges, region @ in figure 12, the loading is
still uniform as at t’=0. In regions @ and @ ,tho loading is
influenced by the starting waves from the leading and sido
edges, and in these regions is thus different from the loading
in either region @ or @. As time increases still further, the
uniform starting load quickly disappears M the sound wnvea
from the leading edge grow in size and as the wing moves
forward. Finally, at time t~, the envelope. of the stnrting
waves from the leading edge is coincident with the trailing,
edge of the wing, and the steady-state l?ading corresponding
to the niw angle of attack a haa been completely eatablishecl
over the wing.

The above relationships can be shown more clearly for the
entirb time interval zero to ~ for a two-dimensional wing
by plotting as a function of time the position of the wing
leading and trailing edges and position of the envelopm of
the sound wav~ which emanate from the leading and trnil-
ing edges at t’=0. Such a plot is shown in figure 13.

It is clear thit at t’=c the regions of the wing@, @, and
(3J correspond to the same regions at t’=i for the wing
shown in figure 12. For t’=0 and in region @ the loading
is uniform and is given by 4a/M0. Note also in figure 13
that disturbances created by the vorticity shed into the
airfoil wake at t’=0 and all subsequent times cannot in-
fluence the flow over the airfoil itself. For t’>t~ and in
region @ the wing has oui%tripped the starting waves from
the leading edge and has attained its steady-stite loading.
For t’<tl the chordwise loading is composed of combinations
of the loading in each of the three regions shown in figuro
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t-c”+

trailing edge s

+

waves from Iea&ng edge

FIQm 13.—Relation of wing position to starting sound VJavmfor
supersonicspeed.

Fmurm lA—Indicial loading on two-dimensional wing M supemonic
speed.

14! SinCe the loading on the wing attains its final steady-

state distribution at precisely the time when the wing has
emerged entirely from the influence of the starting sound
vmves from the leading edge (or ape$, the time to rewh
steady state may be easily calculated for any type of wing
by means of the geometric relationships shown in figure 15.
It may be easily verified that t:, the time required for the
wing to attain its steady-state loading, is given by either of

4 The render IVIUnote ths dndkity botwemi&nro 13ond skstdss depictingthe bound-
ary mnditloos for tblW-dh8!ld0Md ~SS b shdy mP8rmn!0flOW. hklly rOWU&M
Imvopissted ont the onol@Y snd It lmskm awl to calordststhe presaro Ovsra Wing
ImpuIsfvolyatartfngfromrest (rofa3 snd 4).

Leading edge at t’=tj ---

Trace at t’= t; of starting

sound wave from apex

[

Leading edge ot t’=

i

FIGURE15.—Geometricrelationshipsbetween wing and st&-tingsound
wave at time t:.

the following relationships:

c&f.
‘~=vo(fw–escv)

, M.2CSC v+~.COS V, v< ;

,,_c$$(Mo+$z%),a5wv*co,v

(22)

The second of equations (22) applies to that range of Mach
numbers for which the trace of the starting sound wave from
the apex is not twqgen%to the trailing edge at ‘t’=tl. Notice
that for wings having straight or sweptforward tiding
edg~ and straight or sweptback leading edges, equation (22)
reduces to

C&
‘J=VO(M–l) (23)

In terms of the number of half M. A. C. lengths of travel, it
thus appears that for wings having straight or sweptforward
trailing edges and straight or sweptback leading edges,

(24)

whereas for wings having sweptback trailing edges and
straight or sweptback leading edges,

2C0 i’&
YMo>csc v++ Cosv, Vs ;‘“=7 (M.—csc V)

Now consider the subsonic case. Here the situation is
more complicated in that, since the starting sound waves
travel faster than the wing, the wing never escapes their
influenee. Furthermore, the vortici~ shed by the wing at
t’=0 can also influence the loading on the wing since the

3os555-5~u
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disturbance created by the shed vorticity travel forward at
a faster rate than the w@. For these reasons, the indicial
loading at subsonic speeds approaches its steady-state dis-
tribution asymptotically with time. The situation for sub-
sonic speeds will be more clearly evident from examination
of figure 16, which show-s the relationship of the traces versus
time of the leading and trailing edges of a two-dimensional
wing flying at a subsonic Mach number to the traces of the
envelopes of the starting sound waves.

Mo<l

Truce
Ieadin

Trace of~
trailing edge

FIWRZ 16.—Relation of wing position to starting sound wavea for
SuixmniuspemL

Notice in figure 16 that the starting sound waves intersect
the edges of the wing and that each intersection causes a new
sound wave to be emitted, which in turn till intemect an
edge. Furthermore, notice that the vortici~ shed from the
trailing edge at time zero can influence that portion of the
wing behind the sound-wave trace labeled a-b. The hflu-
ence of each successive sound-wave inflection, however, is
wedcer than the last, and as the wing moves away from the
starting vortices their influence diminishes, so that at t’= o
the loading on the wing attains its steady-state distribution.
The variation of the chorchvise loading with time for the two-
dimensional wing flying at a subsonic Mach number is shown
.m figure 17. NTotice that for t’> O, the chordwise loading is
markedly diihrent from the loading at Sup-xsonic speeds (fig.
14). However, for t’=0 and in the region corresponding to
region @) of figure 16, the loading is uniform and equal to
4a/iiO, as in the supersonic case.

DAMPING IN PITCH OF LOW-ASPECT-RATIO WINGS

Previously (eq. (20)), it was shown that for single-degree-
of-freedom, low-fiequeucy, rotary oscillations of a wing, the
principal parnmeter contributing to the damping of the
motion is the damping coefficient C.c+ C.i. This rwult,
however, is not directly applicable to the case of an aircraft
in fight, since genexally additional damping is provided by
virtue of the fact that the aircraft experiences harmonic ver-
tical translator oscillations as well as the rotary oscillations.
It can be shown, however, that although the eflect of the
translator oscillation is usually to increase the total damp-
ing, nevertheless, the parameter of primary importance in
determining the magnitude and duration of the motion re-
mains the damping-in-pitch coefficient C=~+ C.u. The re-
mainder of this section is therefore concerned with a study of

1

I

I

I

FIGURZ17.—Indicial loading on two-dimensional wing at subsonio
speed.

the effect on this parameter of certain important variables.
In particular, the eilect of the position of the center bf
gravity, and the effects of Mach number, aspect ratio, plnn-
form shape, and frequency will be examined, principally by
inspection of the indicial lift and moment responses to n
change in angle of attack.

~ECT OFSTATICMAEGIN

From the previous discussion it will be remombwed that
at supersonic speeds the stability derivatives CL&(dJ nnd
C~&(uJwere shown to be equivalent to the indicial lift nnd

moment expressions, —
J J

““ F,(P)&p and – “aF,(p)dp,

Furthermore, it was shown ;hat these were tho co~tributions
which could cause the tital lift and moment during tlw short-
period oscillation to lag behind the angle of attack. Hence,
by inspection of equation (15),it is evident thd since
Cma(ua)is always stabilizing, when C==(UJ is negativo
(corresponding to a statically stable condition) the possibility
of dynamic instability in the form of divergent rotary oscilla-
tions ariseswhen Cm&(uJ,the shaded area in figure 10 (b), is
larger than C=,(UJ. NOWsince the normal velocity at the
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surface of the wing due to the instantaneous angle of attack
is constant over the wing, the lift derivative C~&which arises

from this boundary condition is independent of the axis
position and C.& will therefore vary linearly with axis posi-
tion. This variation is illustrated in figure 18, where Az%
ropreaents the distance of the center of gravity from the
aerodynamic center, measured positive forward of the aero-
dynamic center.

/

Stable

\
\\ /\

\
\

+AxO

‘1’

---- /“”------

Unstable

/

/

FIGURE 18.—Varfationof Cm.and C.a with asis position.

The parameter CL,, orI the other h~d, is a direct f~ction of

the axis position, since it arises from n normal veloci~ dis-
tribution that varies directly as the distance from the axis.
The moment coefficient (7?=Cwill therefore vary as the second

power of the axis position, and describes the parabolic shape
shown also in figure 18. It is evident from figure 18 that
the sum of Cmcand Cmawill be a minimum at some value of the
static mmgin, rmd that the sign of C~a+ Cmti at hat Point

detmmines whether or not a region of axis positions will
cx%t over which the mungcan experience negatively damped
rotary oscillations. These qualitative statements may be
written explicitly by considering the equation for the damp-
ing in pitch about an arbitrary axis,

(26)

where again AX.refers to the distance of the center of gravity
from the aerodynamic center, and the subscripted terms are
referred to rm axis through the aerodynamic center.

Taking the derivative, of equation (26) with respect to
km, and setting the result equal to zero, there is obtained
the axis location at which the damping in pitch is a minimum

When equation (27) is inserted into equation (26), the mini-
mum vrdue of the dampiug in pitch is given as

(c.g+c&,.=[(c=,)o+(c%)o]+&[(cL,)o+cL~2(n)
a

and hence, a region of instabili~ will exist if

[(c%)o+(cdo]+&[(c~c).+cds>o (29)

If equation (29) is greater than zero, the boundaries of the
region of axis positions over which instability is possible are of
course given by setting equation (26) equal to zero and
solving for AxO/Z. -

*_G_ [(CLU)O+CLJ7

c 4CL= J[(CL?6:CL’I
(30)

Notice in both figure 18 and equation (30) that for a given
Mach number there will be two axis positions at which the
damping in pitch vanishes. Then if the above procedure
is carried out for a series of Mach numbers, one may trace
out a curve as shown in figure 19 which forms the locus of

Ax.
- c

c

Unstable

P
M.

Lo

1.
FICiIJEE19.—Typical supersonicstability bountiry mu-re.

~acih numbem and ti positions at which the damping in
pitch is zero. This locus thus delineates the regions of
Mach number and axis position for which dynamic insta-
bility is and is not theoretically possible. Such loci, cover-
ing a wide variety of tinge at supersonic speeds, have been
presented by a number of authors. Watkins, for example,
presents supersonic boundwy curves for rectanguhix and
triangular wings in references 15 and 16. At subsonic
speed, ~w’ reduction of Pos-sio’s development to fit

order in frequency (ref. 10) can be used to form a stabili~
boundary curve for the two-dimensional wing for a given
(small) reduced frequency. Such a curve is presented for
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the entire Mach number range in figure 20, where, here
+zO is the distance of the axis of rotation behind the leading
edge and k, the reduced fiequen~, is 0.011 for subsonic
speeds and approaches zero for snpexsonic speeds. Notice
in figure 20 that at both subsonic and supersonic speeds,

TTFR?F
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I

Axis-.,taf
k=.oll,Afo<l

/ I 1 k~o, tio>l

Strk& ‘ Unstable Stoble

/

~

Aerodynamic - \
\

Aerodynomic–
center, IWo<1 \ cent~r,~o> I \

—.

Stutde
\ .. —

.2 .4 .6 .S LO L2 1.4 1.6 1
Moth number, ~

FI~UZE20.-f@le&gme+f-fmeclom short-period pitohing stabtity
boundariesfor the two-dimensionalwing at subsonioand supemonic
gm.

the range of Mach numbers over which dynamic instability
is possible is largest for center-of-gravity positions forward
of the aerodynamic center. Further, the large9t range of
axis positions over which dynamic instability is possible
occurs near MO= 1. Both of these characteristics have
been shown to be tie as well for three-dimensional wingg at
supersonic speeds (see, e. g., refs. 15 to 18).

EFFBCT OF MACH NUMBER

Next consider the effect of Mach number on the damping
in pitch of a two-dimensional wing with axis at the leading
edge. The variation with Mach number of the indicial
pitding-moment response to a change in a will fit be exam-
ined, using the information given in the previous sections
and the indickd curves given in reference 4. At supersonic

speeds, the manner in vhich–
J

“0F3(P)df0, the area corre-

sponding to C.&, is atkted can thin be assessedand compared
with Cmd(aJ. At subsonic speeds, use is made of equation
(18b). It is evident in equation (18b) that by iixing k and

.,
choosing ~, such that the quanti@ ~ a(~,k) is the same

at each Mach number, one is free to compare finite areas

-J
‘1 F8(p)dP on an equivalent basis.

& has been mentioned previously, the starting lift, at
aDy Mach number, is 4a/MO and is concentrated at tie
midchord. At MO=O, therefore, there is an initial iniinite
pulse in the pitching moment about an tis coincident with
the leading edge after which the indicial curve drops to
r/4 and begins to grow asymptotically toward its steady-
state value r/2. At low subsonic Mach numbem other
than zero, the initial pitching moment is less than infinite
but very large, being 2/M0, and then falls before growing
toward the steady value T/2j?. As the Mach number in-
creases toward 1.0, the starting pitchinfg moment falls while

the asymptotic value grows, until at ilf.= 1.0 the indicird
curve becomes unbounded in asymptotic moment.

A seen in figure 21, the effect of increasing the Mach
number at subsonic speeds is therefore to increase rapidly tho
area corresponding to the destabilizing moment contribu-

tion, —
J

“ F,(q)d$z
0

-4

-1

c

a,Mo=O

/

CO,MO=1.0

/

/

i
+,,/4?.:0 ‘+, I %=.50 +,!, MO%80I 1

10 20 30 40 50 +

FIQURH21.—Variation with suksonio Maoh number of tho indioial
pitching-moment -rise c.. (~) for the two -4irnensionalwing.
& at Ieadiog edge.

In figure21,k was chosen to be 0.011 and the values of q,

were picked such that —~ G(pJc) was +4.88 at each Mach

number. In the following discussion, the damping momcmt

—
J

“F3(P)dP+4.88 will be referred to as Cm&for convenience.

A; supersonic speeds, the initial value of the pitching
moment 2/M0 continues to drop with increneing MrLch
number, but here the steady-state pitching moment also
begins to fall and at a faster rate thrm the starting momont,
being 2/B. Even more important, as the Mach nurnbw
increases, the number of half-chord lengths traveled to rench
steady state decreases rapidly, being 22, for example, at
MO=l.l, as compared to 4 at MO=2. As seen in figure 22,
the mea representing Cm&therefore shrinks rapidly with
increasing supersonic Mach number and becomes relatively
unimportant at Mach numbers greoter than 2. The trend
of C=&with Mach number through the range 0<MO<2 is
more clearly evident in figure 23. It is seen that C=&is
positive, or destabilizing, throughout the Mach number
range and that its effect is most important at Mach numbem
near 1.0. Also shown plotted for compmison in figure 23
is the variation of Cmawith Mach number. When the
parameters are added, it is evident that the damping moment
Cma+Cm&for the two-dimensional wing with axis nt tha
leading edge is destabilizing in the Mach number range
o<Mo<l.414.

ZFFZ~OFASPECTEATIO

To illustrate the effect of aspect ratio, it is convenient to
compare the supersonic damping-h-pitch characteristics
of a group of triangular wings having subsonic lending edges.
The wings are of equal area and differ only in aspect ratio.
& w-as done previously, the indicial lift responses to a chrmgo
in angle of attack will first be examined. The effect of nspoct.
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FIGURE23.—Variation with Mach number of the damping in pitch of

the two-dimerraionaltig. Axis at leading edge.

ratio on the characteristic area representing CL&can then be
assessed.

& has been mentioned previously, the starting lift
coefficient after a step change in a is independent of aspect
ratio and is therefore equal to 4a/M. for each wing. The
parameter u., the number of half M. A. C. lengths required
to reach steady state, is also the same for each wing, being
a function only of Mach number. The steady-state lift
coefficient, on the other hand, is a function of aspect ratio

CLa

I
I

FIGURE 24.-Effect of aspect ratio on the indioial lift r@Pome CL=(#)
of triangularwings havfng subsonic leading edges. .

and decreases as the aspect ratio is reduced. Thus, as shown
schematically in figure 24, as the aspect ratio becomes
smaller, the characteristic area representing C~& decreases
rapidly.h I?or the wing of smallest aspect ratio, c~d maybe

positive since the area below the steady-state lift coefiieient
is more than Compensated for by the area above. It is
evident, therefore, that a reduction in aspect ratio has a
highly stabilizing eflect on the damping in pitch, since for
positive values of the static margin, the development of a
destabilizing damping moment is possible only when Gj& is
negative. This result is shown in figure 25 where, for an
axis of rotation located at 0.25 Z and &fO= 1.2, the damping
parametem are presented as functions of aspect ratio. Since
for triangular wings the lift due to & is concentrated at
5/8 Z, Cmkis equal to —3/8 CL&. The variation of C.k with
aspect ratio shown in figure 25 then follows directly from the
trend of CL&shown in figure 24. Also plotted in figure 25
is the variation of C.. with aspect ratio (ref. 19).
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-2 -

0
I

~. Cma

2 -

4 -

FL
FIQ~ 25.—Variation with aspect ratio of the damping-fn-pitoh

coef3cient-9of triangular wings. & at 0.255 and Mach number
1.2.

It is appsxent that although C.a becomes more stabilizing

with increasing aspect ratio, the destabilizing tiect of Cm&

predominates, and the trend of the net damping moment is
seen to become highly destabilizing as the aspect ratio is
increased.

By the same reasoning, the variation with aspect ratio
of the damping moments of other types of wings can be
shown to be similar (see, e. g., refs. 10, 20, 21, and 22). A
notable exception, however, is the triangular wing with
supersonic leading edges, whose damping in pitch has been
shown to be itidependent of aspect ratio (see refs. 17 and 18).
This characteristic may be anticipated from a study of the
indicial response curves, since not only are the initial pitting
moment Cm=(0) and the half M. A. C. lengths traveled to
reach steady state (u=) independent of aspect ratio, but,
unlike the subsonic-edged triangular wing, the steady-state
pitching moment C.=(u=) is also independent of aspect ratio,

JThemetksl fndfdal onrv6ahavenot yet b3errcsknleted forthetrMl@erwingwithmrb
smfaleadlrrgedcm The-& timh@Mm~woftie tietip~mdm
fntendti only ta fnd.fmtethe tid of the obae@rMO m wtth e5pa2tI-8th The erect
VddOII OfcL&Wfth_ ~~ _ &_Pa~ ~m the-b ofrof~~ lg.
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()being –$ ~ . Inspection of the results of reference 4

then rev& that the indicial variation c.. (w) between zero

and u= and the steady-state parameter c=. (u=) are likewise
independent of aspect ratio.

EFFECT OF PL+N-FORM SHAPE

~ext, c@der the tiect of plan-form shape on the super-
sonic damping in pitch of a group of wings having the same
aspect ratio. For this comparison, three tinge of aspect
ratio 3 are chosen, having the triangular, swept, and rec-
tangular plan forms shown in figure 26.

A=3 A=3 1 AF3. .
A = 53.10 A .45”

2=4
%“

FIQSJEZ26.—IYingsused in study of tiect of plan-form .&ap.a

Aa has been Shown in the section entitled ‘TXhct of Static
Margin,” the tendencies of the wings toward dynamic
instability can be compared comprehensively ,by plotting
their stability boundaries. For this compariso~ then, use
is made of equation (3o). The stability derivativea which
appear in equation (30) were computed from the theoretical
results of references 10, 19, 21, and 22. Results of these
calculations are shown in figure 27 wherein the stability
boundariw for the three wings are shown as a function of
rmiaposition and Mach number. @Iote that the axis posi-
tion for each wing is measured 69 the distance from the
leading edge of the M. A. C. of the wing, and that the
dimensions are nondimensionalized on an equivalent basis
by referring them to the M. A. C. of the triangular wing.),
It is clear from inspection of figure 27 that at any Mach
number the triangular wing has the smallest range of axis
positions over which dynamic instability is possible and the
rectangnhmwing, the largest.

The differences in the damping characteristics of “the
triangular and rectangular wings will be more clearly under-
stood by a qualitative stidy of their indicial lift respouse
for a Mach number of 1.2, and an examination of the dis-
tribution of loading due’ to & for the two wings. Consider
first the i,ndiciallift responses.

.Agaiu, the starting lift coeilicient is independent of plan-
form shape and is 4aJM0for each wing. For the rectangdax
wing, the lift drops abruptly after time zero due to the loss
in lift in the regions of the wing influenced by the formation
of the tip Mach cones and the starting waves from the side
edges (see fig. 12). Then, as the wing begins to emerge from
the influence of the starting waves, the lift begins to recover,
rises toward its steady-state vrdue (given by eq. 6.3–2 of ref.
10), and attains this value after 12 half-chord lengths of
travel (eq. (24)). The variation is shown in reference 4 and
is redrawn in figure 28. &mentioned previously, theoretical
indicial lift resultshave not yet been developed for triangular
wings having subwmic leading edges. However, the varia-
tion show-nin figure 28 is considered to be a reasonable eati-
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FIGmm 27.-Comparison of single-dogros-of-freedom short-period
pitahing stabtity boundaries at supersonic speeds for three wings of
aspect ratio 3, having triangular, swept, and rectangular planforms.
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FzGurra 28.—ComparLson of indicial lift responw at Maoh number 1,2
of rectangular and triangular wings of aspeot ratio 3.

mate of the true ahape, being baaed on knowledge of the
steady-state lift (ref. 19), the time to reach steady state (eq.
(24)), and the asmmption that the shape of the variation
would be similar to that of the wide triangular wing (ref. 4).
The curve was adjusted within the known end points until
the area corresponding to CL&agreed with that given for
this parameter in reference 19. It is evident from examina-
tion of figure 28 that because of the initial 10Mjn lift and the
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larger steady-state lift for the rectangular tiw, CL&for
thiz wing is significantly more negative than that for the
triangular wing. Next, it is shown in references ‘1O and 20
that with the exception of regions influenced by tip Mach
cones, the loading due to & (for p > UJ for wings having
sweptback leading edges increases linearly from zero along
rays from the apex; whereas for rectangular wings the load-
ing due to & increaaealinearly from zero along chord lima.
These characteristic place the center of loading due to &
at % COfor the triangular wing and approximately % co for
the rectrmguhwwing.e Then for an axis of rotation passing
through the aerod.yuttmiccenters of the wings, the moment
arm for the lift due to & for the triangular wing is Z3 COor
~ Z; whereas for the rectangular wing it is approximately %
CO.’ Thus, not only is the negative out-of-phase lift contri-
bution CL&for the rectanguhu wing significantly hwger than
that for the triangular wing, but the destabilizing damping

moment –~CL&is larger yet, due to the larger moment arm.

Calculations for the steady pitching parameter C=. for an
axis through the aerodynamic center (refs. 10 and 19) then
reveal tlmt Cm.for the triangular wing is more negative than
for the rectangular wing. The net result iz therefore a con-
siderably larger damping moment for the triangular wing
than for the rectangular wing. The rwuht of this compari-
son, however, should not be interpreted as a recommendation
that the triangular rather than the rectangular wing be used
on aircraft from a dynamic stability standpoint. To obtain
adequate static stability, the rectangular wing would gen-
erally be employed in combination with a tail surface; whereaa
the triangular plan form may be sufbiently airworthy with-
out the use of a tail. The addition of a tail surface in effect
reduces the aspect ratio of the rectangular wing, which re-
duction, as noted previously, has a highly stabilizing effect
on the damping in pitch. The taillesa triangular wing may
therefore experience more diiliculty at Mach numbers near
1.0 than a rectangular wing-tail combination.

ZFFZmOFFEEQUZNCY

The previous discussion has beeu restricted to the analysis
of a harmonic motion that is of vanishingly small frequency.
This limitation arose as a consequence of discarding all but
first order in frequency terms in the expmeions of equations
(12) and (14). The question arises: When the frequency
can no longer be considered small, what effect has the
frequency on the damping in pitch?

Previously, the trigonometric terms in equation (14) were
expanded and, rwuming k to be very small, terms of
order & and higher were eliminated. It was then found
thrtt the loss in damping horn that provided by the steady
damping parameter Cma(uo)vma associated with the de-
stabilizing moment contribution corresponding to the term

-J
““ F3(P)dP. Now, however, we discard the restriction

o
of small k and perform graphically the integrations evident

$Due to the fofhroncoof the tip Rfech mm% the -*of leadfngdue to& fssbfftwl for-
wordsomewhatfromtbe pmftlenit hasfor the two-dlmendonolW@ Oalmdatfomfor the
.4-3 rwbmgulor wfm at M-U dmw that the cmta of fmdfw h at O.@lh.

7AmhI, due to tbe fntluoncaof tipbfochmm, theaomxlynemfccenterfsah!ftd forwomi
from }5 c. to 0,443c,. The momentarm Istberefcue01f?2c..

_G(,)c.s,:&T,nk::/~>+
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FIGURE29.—Illustrationof graphicalintegrationprocedurefor finding
effeot of frequenoy at supersonic speed.
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in equation (14) for supersonic speeds for severrd values of k.
The procedure is indicated in figure 29... It is apparent
from figure 29 that the eflect of increasing k is to
reduce the area corresponding to the destabilizing moment

contribution —
J

““ F3(p)cosk@p There appears another
o
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dcatabilizing contribution,
s

–k ;F,(@hk@q, but quite

evidently its tied is small compared to the reduction in

the term –
J

“-F8(p)cm.k&z Notice further in figure 29

that the effec~ of increasing k becomes of mmked impor-
tance when the half-period of oscillation is the same order of
magnitude as the time for the indicial response to reach
steady state. As shown in figure 29 for the frequency k2,
the area b then begins to subtract from a, so that the de-

stabilizing contribution —
J

“aF8(w)cosk~q can be very
o
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period pitching Stabtity boundarb at supersonic speeds for a
rectangular wing of a3pect ratio 4.

smnll. We may therefore expect that increasing the fi~
quency of oscillation has a stabilizing efTecton the damping
in pitch. This conjecture is substantiated in figures 30
rmd 31, where the supersonic stability boundary curves
for aspec~ratiti triangular and rectangular. wings are
shown plotted for various reduced frequencies. These
curves were obtained from calculations bssed on the results
of references 15 and 16. Notice fiat for both wings the
region of possible instabili@- is diminished as the frequency
is increased..

From the results of the analysis for supersonic speeds, we
may further expect that the stabilizing effect of increasing
the frequency will be of even more importance at subsonic
speeds, for here the indicial variation FS(P) dies out at
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FIGURE 32.—Illustration of graphical integration procedure for finding
elTeetof frequenoy at subsonic speed.
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I?Icwmn33.—Variation with reduced frequency of the single-degree-of-
freedom rotary damping-moment coefficient for the two-dimensional
wing at Mach numbem O, 0.50, and 0.80. Axis at leading edge.

iniinity. The half-period of oscillation is therefore always
mmller than the time to rea& steady state. The situation

J

.
for the term — FS(W)COSkpdp is shown in figure 32.

0
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It is evident in figure 32 that the destabilizing moment

-J

m
F3(w)cosk&o diminishes rapidly as the frequenW is

o
increased. The effect of this reduction on the damping in
pitch can be illustrated by plotting the subsonic damping-
moment coeiiicient against reduced frequency for the two-
dirnensional wing (with axis at the leading edge) for Mach
numbers O, 0.5, and 0.8. The results, which were ob-
tained from reference 4, are shows in iigure 33. It is seen
in figure 33 that the large destabilizing effects of the mo-

S

m
ment contributions —

J
Fdp)coskqdp and –k o“ F4(p)sin

kpdp are confined to a ‘relativdy narrow range of reduced
frequencies. Notice further in figure 33 that the range of
frequencies for which instability is possible is small at
MO=O (O< k< 0.04) and grows with increasing Mach
number. This is believed to be the primary reason why
unsteady lift efhcts were found to be unimportant at low
speeds but are of great importance at speeds near the
sonic speed.

PART II-WING-TAIL COMBINATIONS

In the historical development of the field of dynamic
stability, there has been general agreement among researchers
that for conventional tail-aft aircraft, the primary source of
pitch damping is that provided by the tail. In fact, several
early investigators concluded that the tail contribution was
the only one of consequence and, hence, that the contri-
butions of the wing and fuselage to the total damping in
pitch could be neglected with little error (c. f., ref. (12)).
It was also recognized that a major portion of the lift de-
veloped by the tail arose from the influence on the tail of the
vorticity shed by the forward wing, and, in particular, that
a finite time was required for this vorticity to reach the tail,
thereby creating a lag in the development of tail lift behind
the motion of the aircraft. These considerations led to the
formulation of a simple tail damping factor which took into
account the time lag in vorticity in terms of the configuration
geometry and the effective angle of attack at the tail, and
which alone proved to be ‘adequate for predicting the
dynamic-stability characteristics of low-speed aircraft.

It has already been shown in previous sections of this re-
port that for higher speeds, the damping moment provided
by the wing surface itself (and, analogously, the tail surface)
am be highly significant. In subseqmmt sections the im-
portance of the influence of the vorticity shed by the forward
wing on the damping moment provided by the tail is re-
examined. Again, the indicial-function concept is used,
and proves ta be of valuable assistance in illustrating the
physiwd nature of the problem.

GENERALCONSIDERATIONS
THEFOUECOMPONENm

For each of the three harmonic motions considered earlier,
the full frequency-dependent equations for the lift and
moment developed for a single wing and their iimt-order in
frequency counterparts are still applicable for a wing-tail
combination, with the following reinterpretation of the in-
dicial functions C~a(P), C~a(q), CL,(P), and C%(P): ~ch
of the above functions must now be considered to rep-
resent the combined responses of the wing and tail plus
interference effects between the wing and tail. Obviously,
however, since the theory is linear, the combined function is
equal to the sum of its components. In the general case,
four such components for each of the indicial functions may
be enumerated. Them are listed below for the indicial
function CLa(q), that is, for the response in lift of the wing-
tail combination to a step change in angle of attack of the
combination. .

(1)The rwponse ‘in lift of the forward wing to a step
change in @e of attack of the forward wing, the tail being
at zero angle of attack.

(2) The response in lift of the tail to a step change in
angle O{ attack of the tiil, the forward wing being at zero
angle of attack

(3) The response in lift of the tail to a step change in angle
of attack of the forward wing, the tail being at zero angle of
attack.

(4) The r~ponse in lift of the forward wing to a step
change in angle of attack of the tail, the fomd wing being
at zero angle of attack.
The situation is entirely analogous for the other three in-
dicial functions. It should be noted, however, that the
components of the indicial functions due to pitching veloci~,
(?Lq(p) ~d o~a(ff), must W be referred to the same axis
of rotation. In the following discussion regarding the four
components, the use of the indicial lift response to a step
change in angle of attack for illustz-ativepurposes is continued.
It will be understood that the remarks apply as well to the
other indicial functions. .

For supersonic speeds, the component (1) is exactly
equivalent to the response in lift of an isolated wing, and
may be calculated on that basis, utiking the theoretical.
remdts noted previously as applying in the supersonic speed
range (refs. 3, 4, 5, and 6). Likewise, component (2) may
be computed on the same basis. Furthermore, since at
supersonic speeds, the disturbances created by the tail can
never overtake the wing, component (4) is zero. There
remains to consider, therefore, only component (3), for
which there are as yet no theoretical solutions.

For subsonic speeds, M usual, the situation is more com-
plicated. The component (1) is no longer rigorously equiv-
alent to the lift response of an isolated wing, since the
distnrbanc~ created by the wing by its own motion cause
disturbances to be created at the tail which travel forward
at the speed of sound, overtake the wing and, in turn, in-
fluence the development of lift on the wing. Likewise, the
reverse situation exists for component (2), so that the re-
sponse in lift of the tail is no longer that of an isolated tail.
Further, component (4) is not zero, again by virtue of the
fact that disturbances propagated at the tail are able to
overtake the wing. 1 or subsonic speeds, therefore, all
four components require new solutions. It maybe expected,
however, that the secondary coupling effects between the
wing and M, ss exemp~ed by component (4), are of small
magnitude, and may usually be neglected. If it is asumed
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that component (4) is zero, it is within the same order of
approximation to assume that the coupling effects on com-
ponents (1) and (2) are also zero, so that the subsonic
interference problem is then reduced to &e same form as that
of the supersonic problem. In the interest of brevity,
however, in what follows the subsonic case will not be
considered, except to note that the general procedures to
be undertden for obtaining numerical solutions for the two-
dimenaional supersonic case would be the same for the
subsonic case, albeit, considerably more complex.s

In the nest section, therefore, an heuristic discussion is
devoted to the remaining new function, component (3) for
supersonic speeds; that is, the response in lift of the tail to
a step change in angle of attack of the wing.

BOUNDARYCONDITfONSATTEETAILCORRESPONDINGTOASTEP
CfiANGBINANGLEOFATYACZOFTEZWfNG

The boundq conditions corresponding to comporient (3)
may be illustrated clearly by plotting as functions of time
the traces of the wing and tail leading and tmiling edges,
and the traces of the sound waves emitted at the wing
leading and trailing edge at the start of the motion. No
sound waves are propagated at the tail at t’= O since, under
the conditions of the problem, the tail remains at zero angle
of attack throughout the motion. The plot is shown in
figure 34?

/7?7
Toil leading-

edge I

/fl—-–--~i,
‘Toil tmiling edge

:’

FICWJEM34.-Boundary conditions at tail corresponding to step ohange

in angle of attack of wing.

It is claw from exwn.ination of figure 34 that at the start of
the motion and until time ~, the disturbtinces propagated
at the wing as a consequence of the change in angle of attack
have not signaled their presence to the tail. During this
time interval, obviously no lift is developed by the tail. For
time greater than ~, the tail begins to penetrate the upwash
field created by the vorticity shed by the forward wing, and
thereby begins to develop positive lift on that portion of its
surface which has penetrated the field. As tiine increases

sItIstobenoted thot Jon@ and Feblnerkm%&at@l the fneompmsdbfecase (ref. 23)
by a methodvay sfmflnrto that d~kd fn a .mM&pmnts&fon of tblareportentltfwi,
llApp~~~n of If etbods of Q~ ~“

81tfsfmpll@l lnEgum S4thatthewingand tdlaracoplmmr ornmiymplamar~.
TM m?lrfctbn, wbffenot 8 n~ on% fs ad-ble fmm the standpofot of dmplfdty,
and wIUhavlnafk ~odbbehfoma

beyond ~ the tail penetrates the field of shed vorticity
itself and experiences combinations of both upwash and
down-washon its surface. As the tail penetrates further into
the field of vorticity, the region of dowmvash will predom-
inate, so that it may be expected that the lift developed by
the tail will eventually change from positive to negative. At
time ~ the wing has completed its build-up in lift which
thereafter remains constant with time. The build-up in lift
at the tail, however, continues until t~,beyond which time
the pressures on the tail are no longar influenced by the
disturbances created by the wing at the start of the motion.
For time greater “than t;, therefore, the lift on tho tail
remains constant with time and is equal in magnitude to the
steady-state interference lift on a tail immersed in the non-
uniform but steady dowmvash fiqld cr~ted by the
forward wing.

From the above qualitative considerations, one may an-
ticipate that the variation with time of the interference lift
of the tail in response to a step change in angle of attack of
the wing will resemble the variation shown in figure 36.

FIGURE 35.-Qualitative- prediction of variation with time of tail lift
re@onse to step ohange in angle of attaok of wing.

For wings and tails having straight trailing edges, the values
of time c and -tlin @e 35 may be computed exactly from
the geometric relationships shown in figure 34. They are,

(31)

Furthermore, theoretical solutions exist for the steady-state
dowmvash behind wings of a wide variety of plan forma
from which the iinal value of the interference lift CLaT(t;)
may be computed. It remains, ‘therefore, to fix with n
greater degree of certainty the variation C+r(t’)between
fi and tj. In view of the paucity of information concerning
we nature of this variation, the succeeding six sections
of this paper are devoted to the development of theoretical
techniqu- horn which results for certain representative
cases can b.e obtained.

THE TWO-DIMENSIONALCASE
BOUND-YCONDITIONS

Consider first the problem of calculating the growth in
lift at supersonic speed on a tail surface of infinite span in
response to a qtep change in angle of attack of a coplanar
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forwttrd surface, which is also of infinite sp&. This problem
in two dimensions is chosen as a starting point since, here,
use can be made of a valuable theorem; namely, that any
unsteady-flow problem involving only two spatial dimensions
can be related to and solved as an analogous problem in a
supersonic three-dimensional steady flow. The basis for
this statement can be made clear by a comparison of the
governing linearized perturbation velocity potential equa-
tions r~ferred to fixed-space mica for unsteady two-dimen-
sional flow rmd steady threedimensional supersonic flow.
The former is written as,

and is transformed to the canonical form of the wave equa-
tion by the substitution t=u#:

@=+@== @’t (33)

.For the steady three-dimensional supersonic case, the
potential equatioonis

@w+@.=&@. (34)

It is then apparent that simply by replacing z, y, and p in
equation (34) by t, x, and 1, respectively, equation (34) can
be made identical to equation (33). Thus, a solution to
equation (34) for a Mm.h number of @ (p= 1) can likewise
be taken as a solution to equation (33) with proper reinter-
pretation of the variables z, y, z. A complete development
of this analogy can be found in references 3 and 4 along with
several applications to problems of isolated wings. It
sufficeshere simply to state that the theorem maybe applied
with equal validi@- to problems of wings in combination.
In the light of this result, iig-ure34, which depicts the bound-
ary conditions for the two-dimensional unsteady flow
problem, takca on the following interpretation for the
analogous three-dimensional steady-flow problem: the time
axis becomes a spatial coordinate alined with the free-stream
direction; the z axis becomes the spanm.secoordinate, normal
to the free-strmm direction. The z mis is normal to the
xt’ plane and again is taken as positive downward. The

. tiaces of the wing and tail leading and trailing edges and the
projections of their chords on the z axis become in the steady-
flow problem the projections onto the d’ plane of the physi-
cal outlines of a pair of semi-inihite sweptback wings with
tips normal to the free-stream direction. In the unsteady-
flow problem the forward wing is caused to attain at t’=0
an angle of attack a which remains constant for all time
there~fter. This boundary condition is interpreted in the
analogous steady-flow problem to mean that a uniform
normal velocity of magnitude VOa exists everywhere over
the surface of the forward wing. The traces of the sound
waves which are emitted from this wing at t’= O as a conse-
quence of the change in angle of attack become in the steady
supersonic problem the characteristic Mach lines which
emanate from the foremost extremities of the wing. The
rear wing, being at zero angle of attack in the unsteady
problem, remains so in the analogous steady problem, and
thus no Mach lima ‘appear at the extremities of this wing in

the steady-flow analogy. The procedure for calculating the
liftat the tail in response to the change in angle of attack of
the wing is then theoretically clear. By any of the lmown
methods available in steady three-dimensional supersonic
flow theory one computes in the region occupied by the tail
the perturbation-velocity field caused by the presence of the
forward lifting wing. In the plane of the tail surf&e, this
field contributes a normal-velocity flow component which is
canceled by the development of loading at the tail. A
‘(spanwise” integration of the loading over the tail then
yields the desired result — tail lift m a function of time.

SrMPUPIZDPROBIJIM

The procedure outlined above in principle cotititutes a
straightforward exercise in the application of the three-
dimensional linearized supersonic steady-flow theory. Un-
fortunately, in practice, the multiple integrations that arise
in the course of the computations are exceedingly complm,
and have thus far deiied solution. These computations were
therefore discontinued in favor of a simpler approach which,
in itself, retains the essential nature of the problem and has
the additional advantage of lending itself readily to extension
and further refinement. The simplification consists of
replacing the forward wing by a single two-dimensional
vortex which, just as the wing, starts impulsively from rest
at t’ =0 and moves forward in the z= Oplane with constant
supersonic velocity V.. In addition, in satisfaction of tie
condition that a vortex cmmot end in a fluid, there must be
placed at the point of d~parture of the moving vortex, a
stationary or starting vortex of eqmd and opposite stiength.’”
It is mll-kuovm that the boundary conditions for a lifting
surface may be satidied by an appropriate distribution of
vortices; tihnsthe result to be obtained from ti simplificat-
ion may be viewed as a fundamental one in the sense that
the solution to the original problem may in principle be
recovered by an appropriate superposition of elementary
solutions. A procedure for accomplishing this task is de-
veloped in a later section of this paper.

The boundary conditions ,for the simplified problem are
illustrated in figure 36. Here, “true time” t’ has been re-
placed by its spatial analog t, the relationship being t=aJ’.
The boundary condition for a closed vortex system is that the

l---~l’-l

Trace af n-wing
vortex x--M&

FIGW 36.—Boandsry conditions for simpli&i problem.

uThemlxemUaofthemovfmandstartingvortieumastjinwneral,be mnnectalby
twotraflfmwrtlca toformtheusualdosedlmP. Homveq farthe two-dlmmudonalPMb-
]em, it is suppmsd that the bflfng vartia arem feraway fromthe cantas of the moving
andstarUngvortkm th8t thetretkt on theflow the maYbe nogleeial.
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jump “k potential is a constant within the loop formed by the
moving, starting, and trailing vortices. For the two-
dimensional case this condition translates in figure 36 to the
stipulation that the potential ditkence A@ across the z= O
plane be a constant within the shaded region bounded by the
traces of the moving and starting vortices. The problem
of calculating the induced velocity flow field associated with
the vortex-pair may now be related to the analogous three-
dimensional steady-flow problem; namely, that of calculating
the induced flow field due to the presence in a supersonic
stream of a yawed triangular wing, one edge of which is
parallel to the free stream, the other being swept ahead of the
Mach tine from the apex, and whose surface is warped in
such o way that the potential difference across it is a constant.
This problem has been salved by Liomax,Heaslet, and FuUeI
in reference 24, wherein it is found that the induced vertical
velocity in the z= Oplane for supersonic speeds is given by
the relation,

(35)

Thus, the problem of calculating the lift at the tail in response
to the step change in angle of attack of the forward wing has
now been reduced to one which can be stated in “ti of the
stady-state analogy as follows: Find the section lift as a
function oft on the semi-iniinite sweptback plan form shown
in figure 36 which rests at zero angle of attack in a superwmic
stream and which is subjected to Qvertical-flow distribution
given by equation (35) on that portion of its surface lying
within the region —tSz St.

MZTEODORSOLUTION

The problem stated above may be solved by any of a
number of methods available in steady supersonic flow
theory. One that immediately suggests itself, however, by
the conical nature of equation (35) is the method of super-
position of elementary sectors. If in equation (35) the
substitution is made, a=x/t, we get,

(36)

The quantity a of course, defines a ray emanating hwm the
origin of the zt coordinate system, and by equation (36) it is
seen that along a given ray, the normal velocity varies
invenmly m z. Th~ if the normal-velocity distribution is
decomposed into infinitesimal steps of magnitude dw along
rays from the origin, it cm be specified that within ench semi-
inflnite sector of the tail formed by the tail leading and trail-
ing edges and a ray from the origin, the normal velocity

over the sector varies only as $ where k is a constantfor the

sector, given by,

[

A@ ~~ 1k=; M. — —
2T (a+a!fo)

elz+’(a)da. (37)

It is then rLrelatively simple problem to solve for the loading

on a singlesector caused by the normal-velocity distribution ~~

and thence by the superposition of elementmy solutions, to
tid the loading and integrated loading caused by the given
normal-velocity distribution. This superposition procedure
is briefiy outlined in the following paragraph.

The boundary conditions for an elementary sector formocl
by an arbitrary ray a are illustrated in figure 37.

t

x

x

-_Arbl!rary I ay o

‘t,-a.5(x,f)

.

FIGURE 37.-l3oundary conditions for elementary motor.

Within the shaded region shown in the figure the normal

velocity varies as ~; elsewhere on the plan form it is zero.

‘p t a) at thoI@mming now that the loading coefficient ~ (z, ,

point x,t for the elementary sector has been “&lculated, it is
desired to sum the effects of all sectors that influence the load-
ing at the fixed point. A contribution to the loading at the
point z,t will be made by each sector within whom zone of in-
fluence the point lies. & seen on figure 37 this region CNC-
tends from the sector defied by the ray a= 1 to that sector
whose trailing Mach line from the apex of the sector passea
through the point. On figure 37 this sector is defined by the
ray a=Z(z,t). The total loading at x,t is then expressed by
the formula

‘p t a) isthewhere # (a) is given by equation (37) and ~ (z, ,

loading coeilkient at a point on the elementary sector duo
•1

to a normal-velocity distribution ~ The second term in

equation (38) accounts for the efFectof a possible jump in w
at the ray a=l. However, in the present problem, #(l)
is zero so that this term disappears. The section lift at the
station tisthen found simply by an integration of tho loading
in the z direction,

There remains to discuss the calculation for the sector
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loading : (z,t,~) at the fixed point z,t. This calculation,

however, involving as it does a wing having all supersonic
edges, is straightforward rmd does not require elaboration.
An interesting sidelight axisiig as n result of this work was
the discovery that the loading is zero at a point on the sector
whose forecone includes only the sector leading edge and
intersects the line x=O.

The section lift was found to vary in form in each of the
five time intervcds designated in figure 38.

FIQURD 38.—Regions used in analysis of lift responw of two-dimen -
sional~td.

Unfortunately, ditlicultiesof integration prevent the presen-
tation of solutions in closed form for the section lift in all but
the that time interval. It was always possible, however, to
reduce the integrals to single quadrature, so that numerical
or gmphical methods cm be employed to obtain results for
specific crises. The results in integral form for the section
lift in the intervals 1 to 5 are somewhat lengthy and therefore
me presented in Appendix A. -

DISCUSSION

In order to illustrate the nature of the result, the variation
of section lift at the tail with ‘(time” t has been computed
for the following ense: a tail of unit chord, tail length 1 of 3.2
units, and Mach number 1.7. The result is shown on figure
39, together with a sketch of the boundary conditions corre-
sponding to the particular case under study.
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FI~IJZEI39.—Rapnse in lift of two-dimetional tail ta normalvelooity
of two-dimensionalvortex system. MO= 1.7.

It ie to be noted first in figure 39 that the section lift becomes
irdinite when the leading edge of the tail reaches the position
of the starting vortex (t=~ in &. 39). This is not unex-
pected, since at the instant before the leading edge penetrates
the vortex there mists on the tail an infinity in upwash;
whereas just after the penetration the effect of the infinity
in upwash is just canceled by an opposite effect caused by
the Sty in dowmvash. It is interesting to observe, how-
ever, that a like result does not occur as the tail trailing edge
leaves the porntion of the starting vortex (t=ll). This can
be explained by noting that the smmd wave emitted when
the leading edge penetrates the starting vortex serves to
broadcast the existauce of the iniinite discontinuity in normal
velocity over a &ite !egion of the tail. The distribution of
the effect of the discontinuity thereby modifies its influence
at any one point. ~ext, observe that the lift changes sign
at t= (?, which is very closely the time when the tail &ord is
situated symmetrically with respect to the starting vortex
As can be seen on the figure, the tail chord experiences very
nearly equal amounts of upwash and dowmvash at this time.
Finally, note that at t=lZ the lift on the tail disappeam as
the tail moves completely beyond the region of disturbances
created by the moving vortex at t=.O. This fact is consistent
with the statement made @lier that the iinal value of the
lift on the tail should be that due to the steady-state down-
wash field of the forward wing, for the dowmvash behind a
moving two-dimensional vortex in steady supemcmic flow is
zero. It is instructive to remember that the same fact is
true for the lifting two-dimensional wing in a steady super-
sonic flow, so that no inconsistency arises from this source by
a superposition of solutions of the me shown in figure 39 as
a closer approximation of the response of the tail to a step
change in angle of attack of the forward wing. The develop-
ment of such a procedure will be outlined in a later section of
this paper.

@pL1cAT1ON OF METHODS OF GUST ANALYSIS

It will no doubt have been noted by the reader that the
subject of inquiry in the preceding section, namely, the prob-
lem of calculating the growth in lift at the tail caused by its
penetration of a region of disturbed flow created by a forward
lifting wing, bears in many respects a marked resemblance
to another more familiar problem. That problem is the
calculation of lift on a wing which penetrates a gust of pre-
scribed space-wisenormal velocity distribution. Indeed, the
two problems are identical with one exception: in the gust
problem it is generally assumed that we normal velocity of
the gust at each station in space remains constant with time;
whereas in the wing-tail interference problem this is not the
case. If it can be shown in the wing-tail problem, however,
that at each station in space the variation of normal flow
velocity with time can be safely ignored during the time
interval required for the tail to pass the station, then the use
of a gust-type analysis is valid, and an important advantage
accrue9. One can then calculate in a relatively simple man-
ner the growth of interference lift on any tail surface for
which the response in lift to a sharp-edged gust of uniform
intensity is known. The so-called gust-function has been
calculated for the tm-d.imensional case (ref. 3), the rectangu-
lar plan form (ref. 6), and the triangular plan form having
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supersonic edges (ref. 5). Thus, although it is still necessary
to retain the two-dimensional nature of the dowmvash field
created by the forward wing, the gust analysis, if valid, pro-
vides a means whereby two important clases of three-
dimensional tail surface-scan be treated. The object of this
section will therefore be to investigate the validity of the use
of a .Wst-type analysi9 in place of an exact analysis.

The estent of the approximation involved in the gust-type
analysis cm be best visualized in the two-dimensional case.
Further, since the exact solution for this case has been ob-
tained in the preceding section, a comptin of the two re-
sults provides a means of a.sessing the magnitude of the
error introduced by the approximation to the flow. C%mpare
first, then, the boundary conditions at the two-dimensional
tail for the exact and approximate cases. On figure 40
these conditions me shown schematically for the Mach num-
ber, ta~ chord c, and tail length 1 which correspond to the
numerical results given in @u.re 39 of the preceding section.
For the exact cnse, the normal velocity at the tail is seen to
vary inversely m x or t along rays from the Oria@Lalposition

x

Y

/
Fmum 40.-Comparisonof exact and approximate

distributions at the tail location.
normal velocity

of the moving vortex. For the approximate case, we fix the
correct variation of normal flow velocity at the tail leading
edge and require that at each station z the normal vcdocity
existing at the leading edge remains the same for all time
thereafter. It then is clear from inspection of figure 40 that
at least for the particular conditions chosen for study, tlm
diilerences in normal velocity experienced by the tail for the
two cases are not excessive.

By titue of the approximation, which &w with respect
to time the normal flow velocity at each station in space, the
problem of calculating the lift at the tail is reduced simply
to a superposition procedure entirely analogous to that
already described in the first part of this report for the case
of a wing performing arbitrary maneuvers. Here, however,
rather than responding to a series of step changes in angle of
attack or pitching velocity, i%e tail responds to a series of
sharp-edged gusts, so that the Duhamel integral, a\Tres.sing
lift at the tail as a function of t;me is written a9,

(40)

C.c
In equation (40) the quanti@ m (~) is the gust function

“
for the two-dimensional surface,.g&~u in reference 3, rmd w(t)
is the variation of normal flow velocity experienced by the
tail leading edge. Substituting z=l–ilZJ in equation (36),

(41)

With the use of equations (4o) and (41) and the rcmdta of
reference 3 the intaference lift at the tail may be computal
in a stmightforward m“rmner. &in the exact problem, how-
ever, ir@gration difiictities prevent the presentation of o
solution in closed form in all but the fit time interval

1 l+c
— The solution in quadrature form is givenikfo+l~t%+l

in Appendix B. These results have been utilized to computo
the variation of tail lift with time for the same set of condi-
tions chosen in the preceding section, namely; Mach number
1.7, tail chord of unit length, and tail length of 3.2 units.
Results of these computations are compared with the exoct
rssults in iignre 41.
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FI~UFLE41.—Compariaonof exaoband approximate tail lift reaponsos.
lie= 1.7.



USE OF INDIOIAL FUNC1’IONCONCEPTIN ANALYSIS OF UNSTEADY MOTIONS OF WJNGS AND WING-TAIL COMBINATIONS717

It is readily apparent horn inspection of @m-e 41 that at
least for the conditions chosen, the gusbtype analysis pro-
vides an excellent approximation of the variation of tail lift

1 l+c
with time over the entire time interval, — —.

Mo+l ‘t< M.–1
We may therefore proceed to the three-dimensional cases
with reasonable expectation that the solutions resulting horn
the gust approximation will be of acceptable accuracy —
again, at least for sets of boundary conditions corresponding
to those used above.

The analysis for the rectangular and triangular tail plan
forms proceeds mactly as that for the two-dimensional case
just discussed. For the rectangular plan form, in fact, the
two-dimensional solution constitutes a major part of the
tital lift, and it is only neces.wry to add to the results given
above the contribution of the tail tip regions. The gust
function for the tip regions of the rectangular plan form is
presented in reference 6 and is of such simple form that the
integration of equation (40) may be done quite easily. Not
so for the triangular plan form (ref. 6); for this case graphical
or numericnl techniques are again necessary to obtain results
for specific cases. Solutions”for both the tip regions of the
rectangular tail and for the triangular tail are given in
Appendix B. hTumericd results, illustrating the nature of
the solutions, are given in iigure 42. The boundary condi-
tions for these results have been chosen to be identical to
thoso picked for the two-dimensional reaulta of figures 39
and 41, so that the results of figure 42 for the rectangdar
tip regions may be directly added to those of @e 41 to
give tho total lift for the rectanguhw tail. hTotein figure 42
that aspect ratio A appears simply ~ a multiplying factor,
so that them results are applicable for tails of any aspect
ratio, subject only to the limiting conditions prescribed in
the figure. The condition on the rectangular tail insures
that the Mach line from one edge does not intersect the
opposite edge; that on the triangular tail insures that the
leading edge is supersonic. Note also in figure 42 that unlike
the case of the two-dimensional tail, no infinity appears in
either the lift contribution of the rectanguhw tip regions or
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FIQUnE 42.-Approsimate response in lift of wide triangular W and

tip regions of rectangular tail to normal veIoci@ of two-dimensional
vortex system. ilfa= 1.7.

the lift of the triangular tail when the tail first penetrates
the position of the starting vortex. This, of course, is attrib-
utable to the fact that the fit penetration in either case
is made by a surface of iniin.itesimal span.

APPLICATION OF STRIP THEORY

In the preceding section it wm shown that approximate
response functions could be obtained for those three-dimen-
sional tail surfacea for which the indicial gust function was
knomn. There is still another method by which the responses
of certain other classes of three-dimensional tail surfaces
may be derived, and that is by the use of. strip theory.’l
It has been shown by a number of authors (refs. 4, 25, and
26) that the use of strip theory is exact in ctdculating the
lift, pitching moment, and rolling moment of surfaces having
all supersonic edgea and straight trailing edges normal to the
free-stream direction. Further, no restriction need be placed
on the generality of the normal-flow-velocity distribution
encountered by these plan forms. Thus, for example, in the
present connection, the lift on the wide triangular tail in
response G either the two-dimensional or threedimensional
vortex field can be computed exactly if the responses of the
two-dimensional tail to thwe fields are known.

When restrictions me placed on the nature of the normal-
flow-velocity field, still other types of plan forms may be
trated without approximation by the use of strip theory.
An obvious example is the response of the apex-rearward
wide triangular tail to the two-dimensional vortm field.
Clearly, since the loading at no point on the tail can be
influenced by disturbances from the edges of the tail, the
integrated lift at every section is just the lift on a two-
dimensional tail having the same tail length md chord as
the section. The same would be true for any td having
supemonic edges and a straight leading edge normal to the
stream direction, so long as the normal flow velocity is
invariant with the spanwise dirdction.

As simple exampks of the use of strip theory in the present
problem, formulas will be developed from which the exact
responses in lift of apex-f orward and apex-rearward triangular
tails to the two-dimensional vortex field may be obtained.
Consider first, however, the more general plan form pictured
in figure 43, in which the dimension 1is defied as the distance
between the moving vortex and the foremost point of the
tail, and the w coordinate system is fixed in space.
The use of strip theory (which, it should be cautioned, is
not exact for the plan form shown in fig. 43) enables one to
formulate tiediately the lift on the finite-span tail in
terms of the two-dimensional response as follows:

()~ ,(z,i!; @ denotes the loading at a point on a two--w-here —

dimensional tail which is subjected to the same normal flow
velocity variation as a section c(y) of the three-dimensional
tail. The inner integral in equation (42) is recognized,
however, as being just the two-dimensional section lift

II‘1’h~~ ‘J~~ th@@’.k m h~ ~ Ih@ _ tit 1%the lnt@’atWl Ilft at a
~wlso st.atkmOf the throWUmoWorLalalrfacolsn!sumd to bethe?amemthot ona
two-dimmslonal.mrfamhavfng the same ohordlength and andwgolag the rame motion.
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FIGURE43.—Defition of notationusedin striptheoryanalyaie.

coefficient multiplied by the local chord c(y), so that equa-
tion (42) becomes,

C.(t)=;sbpC@)CZ(Z+t(y),C@),Ody (43)
0

where the quantities 1+ ~(y), c(y) replace 1and c, respectively,
in the two-dimensional-tail lift response previously derived.
The formulas for the apex-forward and apex-rearward tri-
angular tails are simply special cases of equation (43). For

the former case, c(y) is given by ~ y, and after a change in

bvmiables, y=z q, equation (43) becomes,

J
(?L(t)=2 ‘qcl@+cO(l+, TCO,t) dn

0
(44)

For the apex-rearward triangular tail, ~(y) is zero, so that,

cL(t)=2Jlcz(z, tl%,t)dq (45)
0

Equations (M) and (45) have been utilized, together with
the results for the two-dimensional-tail lift response to
compute the responses in lift of apex-forward and -rearward
triangular tails to the two-dimensional vortex field. Results
in integral form are given in Appendix C, and numerical
results for tails of unit chord, tail length 3.2 units, at Mach
number 1.7, are shown on fiawe 44.
The result for the apex-forward triangular tail is compared
with the approximate result derived for this W@ in the
previous section by use of a gust-type analysis. Again, as
in the two-dimensional case, it is evident that the guw%ype
analysis provides an accurate estimate of the tail ~t response

1
over the entire time range, — —

Mo+l ‘t< z~l

SUPERPOSITION OF ELEMENTARY SOLUTIONS

It has alredy been noted in a previous section that the
response in tail lift to the normal-velocity field created by a
single vortex loop could be viewed as a fundamental result
in this sense: The solution can, in principle, be used as the
elemerhry function in a superposition procedure designed
to determine the response in lift of the tail to the normal

5 I

4 I \

3 - ‘--- -—* Exoctsolution

Ii

‘\ \\ y ---~ Approximate

CL 2

()

1~’ i

‘,, t,,- Exoct

2XQ \, ‘,/.
-C ‘ / / \“

o A ‘ ,1, \ ‘\

I I I

\\\‘, ‘\
-1 A

// w

-2 /

-3 \ II/ Y

4

-5, 2 3 4 5 6
f

FXGUZE44-Exact response in lift of apex-forward and apex-ranrwwd
wide triangular tail to normal velocity of two-dimensional vortex
system. MO=l.7.

velocity field created by a forwti wing of iinite chorcl. In
this section a procedure for accomplishing this encl is de-
veloped and the result of the analysis applied to Q special
case. For the sake of simplicity, tlm analysis is again
restricted to one dealing with two-dimensional forwmd
surfaces, so that the normal-velocity field encounterwl by
the tail is uniform in the spmmise direction. However, no
restriction is placed on the span of the tail.

In the previous sectionssolutionshave been obtained for the
lift at the tail in response to a single vortm pair. Tlm
boundary conditions for the vortex pair are exhibited in the
xt plane as a triangular sector having a uniform potontial
di&rence A@within the sector (see@. 36). We wish now to
distribute these sectors over the region traced out in the xt
plane by the forward wing and its wake in such o way as to
build up the variation of A@in these regions corresponding to
prescribed normal-velocity patterns over the wing. The
sum of the responses in lift of the tail to each of these slabs of
A@ is then the response to the normal-velocity field created
by the wing. It is convenient to treat the effects of the wing
and wake separately, “and -weconsider the wing first. Place
a vortex pair at an arbitr~ chordwise position of the wing
with origin at t=O. The response in lift at the tail to the
single vortex pair ~ a function of time tand a characteristic
distance, chosen to be the distance P between the moving
vortex and the tail leading edge. This of course is the solu-
tion derived previously with 1 replaced by p. Now place
another vortex pair of opposite strength with origin at tho
same position in space as the first pair, but shiftad m incre-
mental time AVlater. & shown in iigure 46 there remains
a strip of chord M@V having unit A@within the strip.
The response in lift at the tail to the remaining strip at n
fixed time t is, .-

AO.~, t)= CL(p)t)—CLOL-MAV, t—zM (4t3)

Letting the changes in p and t approach z~, equation (4(3)
may be cast in the form of the directional dermative,

(47’)
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Fmurm 46.—Boundary conditions for response in lift of tail to an
elementary strip of unit A@.

Thii is the response in lift to n strip of unit A@ situated a
distance p from the tail. The response to any other strip
starting ut a later time but at the same distance p from the
tail will of course be identical to this result. We may there-
fore build up the response to an arbitrary variation of A@ in
the strip simply by use of the Duhamel integral; that is,

Let i!-t,=r, and perform the imhmted differentiation, noting
from physical considerations that A@(P, O)=CL(p, .0)=0.

The influence of the wing on the lift at the tail is then ob-
tained simply by a summation of incremental strips as p
goes from 1 to l+cOW. Note that the increment A~ is &l@q.
OL(t)w]~~=

Now consider the influence of the wake. The potential dif-
ference A@ in the wake has the characteristic that at each
statioq, in space the AX existing at the trailing edge of the
wing remains the same for all time thereafter. The distribu-
tion of A@ in the wake may therefore be built up by elemen-
tary vortex pairs whose origius are placed at the trailing edge
of the wing. Since these elementary sectors are all the same
distance 1from the tail, the response in lift at the tail to each
of the sectors is of the same form, and the sum of these re-
sponses at a fixed time tmay again be found by use of the
Duhamel integral,

J

L
. CL(l, ~)A~ (1,t–7) dr (51)

0

The sum of equations (5o) and (51) is then the desired re-
sponse in lift at the tail to a prescribed A@distribution on the
forward wing.

We consider next a special caae for which the form of equation”
(52) may be simplified considerably. For this case the
loading on the forward wing is prescribed to be uniform
in the ehordwise direction and to remain constant with
time. The speciiied boundary condition maybe interpreted
either as the exact case for a forward wing which starts to
deform at t=O in such a way as to give rise to a uniform
loading over its surfac8, or as an approximation to the res-
ponse of a flat forward wing to a step change in nornml
velocity over its surface. It is the latter case which is of
real interest here, and of course the approximation introduces
some error into the variation of A@ on the wing and in the
wake. However, rtscan be seen on figure 46, a comparison
of the exact and approximate A@ distributions shows that
the di.iferencesbetween the two are not great for the ease
chosen, and would be even smaller for higher Mach numbers.
It is expected that the approximation should yield acceptable
results for Mach numbers greater than about 1.4.

%llTI’\. Y \
dw ta uniform

-— ~due to unifarrn
Ioadmg on wmg

FICNJEE4f3.-Comparison of distributions of A@-for two-dimensional
wing and wake due ta uniform loading and uniform normal velooity
on wing.

The prescription of uuiform loading on the forward wing is
seen on figure 46 to amount to the following conditions on
A@ on the wing:

A@(u,t)=kt Ogg

=kt t>z

where
J+com-p—

u. “

(53)

It follows that the condition on A@ along the trailing edge
of the wing must be, ”
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A@(l,t)=kt

(54)

Performing-the required differcmtntionof A@ with respect to
(t–~) rmd substituting in equation (52), we get

c“’)=kr*-d’f-l[$c’@”)++%’’J’)ld’+
r, Is

J
k ‘,. . CJl,r)dr “

%
(55)

The inner integral Iz in equation (55) may be evaluated
immediately and givw

(56)

For the inner integral 1,, we make use of the definition for
the differentiation of a definite integral, that is,

Substituting equations (56) and (57) in equation (55) we
have,

“(’’=kJ’+’”d”[$J:zcL~’)d’+
&cL@~]+k~’GwcL(l,T)&

M.

Let

J

t
.C&,T)d~=~@,t)

t–t

Then in equation (58)

J

1+~” ~ l+c.w
~~ F(@)dY=F&,t) =

z 1

J

t

J

t
CL(l+COw,r)dr– -CL(l,7)dr

t t–c~.

Substituting equation (59) in (58) there remains only,

(58)

(59)

(60)

This result may be easily verified by interpreting the integral
in equrdion (60) physically. The integral specifhs that we
sum the effects of elementm-ysectors, all of the same strength
in A@,and whose origins are at t= Owithin the boundaries of
the wing leading and trailing edges. A graphical summation
of several such sectors will show they do indeed build up the
A@ distribution over the wing and wake prescribed in figure
46.

Equation (60) has been utilized along with the results of
the pretious sectio~ for cL(/@) for the tiodimetio~l tfkil
and the rectangular tail tip regions to approximate the
response of the tail to a step change in angle of attack of a

forward surface of finite chord. Results of computations
for a wing chord of 2 units, tail chord of 1 unit, tail length
1 of 3.2 units, and N1ach number 1.7 are shown in figure 47.

LO I I I I

I
I

I
Twc-&rer&@

a toil I I

t
FIGURE 47.—Appro&nate response in lift of two-dimmaionrd tail nnd

tip regions of rectangular W ta step change in angle of attaok of
two-dimensional wing. itfo= 1.7.

Note that the main difference for the two-dimensiomd rumlt
from the rew.dtfor the repome to a single vortex pair is the
disappearance of the iniinity in lift when the tail penetrates
the position of the first starting vortex. Reference to figuro
46 will show that this is attributable to the fact thnt tho
fit vortex penetrated by the tail is of iniinitesimrdstmngtl.
Again, as in the single-vortex example, the responso in lift
for a finite-span tail satisfying the restriction B.A21 mny bo
obtained’ from the results of figure 47 by direct nddition of
the two variations shown in the figure.

It should perhaps be noted that the form of equation (52)
permits of still other sim@ifications which should yield
acceptable results for special cases. For instance, when tho
chord of the wing is small compared to the tail length, it mny
be expected that the inlluence on the build-up in lift at tho
tail of disturbances on the wing should be minor compnrecl
to the influence of disturbances in the wake. It is seen in
equation (52) that this condition is equivalent simply to
ignoring the fit integral in comparison to the second. TIIo
simplitkation, of coume, represents a considerable reduction
in computational labor, and, in addition, the form of the
remaining integral is simple enough so thnt the exnc,tvmia-
tion of A&at the trailing edge of the wing corresponding to
the prescribed normal-velocity distribution on the wipg mny
be used with relative ease. For example, for the case of
uniform normal velocity on the wing, the variation of A&(l,t)
at the wing trailing edge may be derived from the results of
reference 3, and is given by

cow. 0, —.~–1= J
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Upon substitution of these expressions in equation (51) and
performance of the required integration, the solution yields
in any cam the exact response of the tail lift to the influence
of the wake, and, in cases ivhere the tail length is large
comprwed to the wing chord, a reasonable approximation of
tho total response in lift of the tail. The response in lift
of tlm tail to, say, indicial pitching motion of the wing, or
for that matter, to any indicial motion of the wing for which
the variation A@(I?,t)is known, can be approximated by
tho samo technique.

CONSIDERATIONOF THREE-DINl13NSIONALFLOWEFFEC1’S

In rdl of the analysis presented thus far, attention has
been focused solely on problems in which the flow field
crmsed by the forward wing is two-dimensional. This
effectively limits the results to casea wherein the plan form
of tlm forward wing is essentially rectangular, with span
sufficiently large so that the flow from the tips of the wing
does not significantly affect conditions in the vicinity of the
tail. In order to treat more general cases, including cases
wherein the plan forms are of nearly equal span, it becomes
necessary to consider in detail the effects on the tail of the
remainder of the vortex loop — the trailing vortices.
Inevitably, the admittance of spanwise variatiom of normal
velocity into the flow-field picture complicate the analysis
considerably, and it appears that exact solutions for the
tail lift response will be mceedingly difhdt to obtain.
However, the change in the physical situation caused by the
addition of the trailing vortices can be fully described, and
this description will be seen to suggest simplifying approxi-
mations which serve, in turn, to make the problem of cal-
culfiting the tail lift response more tractable.

THE IW.OWFIELD

Consider first the flow-field caused by the motion of the
complete vortex loop. The boundary condition character-
istic of the vortex loop is that within the confines of the
moving, starting, and trailing vortices, the jump in potential
A* is a constant across the plane containing the vortices,
and zero elsewhere in the plane. Thus it is clear that the
two-dimensional vortex system considered earlier can be
converted to the three-dimensional system by subtracting
off regions of constant A@ of semi-infinite spanwise extent,
rIsshown in figure 48.

~fi~ /“-;T~&w’
-!“ .

A A
c > c >

n P“ n

“~-Twa-dim~”cnal

A@
sta rtlng vartex

FmunE48.—Super@sition procedure for converting vortex system
from two- to three-dimensions.

Obviously, by reason of symmetry, we need consider the
effect of only one of the added trailing-vortex loops, and,
further, it is suilicient to consider the effect only within the’
shaded region of figure 49.

‘Lx.--MO~ A

~yz+xz= tz

“Lx . ~

t
x

FIGIJRD 49.—Boundary conditions in the z=O plane for a trailing
vortex loop.

In figure 49 the circular region, denoted region I, is the
domain in the plane of the vortices within the sound wave
emitted at t= Oby the motion of the trailing vortex. This
region extends from values of z between +t and —t, and
constitutes the interval within which the flow is both un-
steady and three-dimensional. For values. of z< —t, the
flow has reached its steady-state distribution, and is therefore
stationary with respect to an observer traveling at the speed

of the moving vortex.
‘heh” ‘=’(%) se’~off

this steady-flow regime are of course the Mach lines
emanating horn the juncture of the moving and trail@
vortice9. All points to the left of the shaded region are
clearly unaffected by disturbances horn the trailing vortm
itself, and hence the flow there is just the mirror image of the
two-dimensional flow considered earlier. I?oints to the right
of the shaded region are completely unaffected by the action
of the trailing-vortex loop, and there the fluid is undisturbed
by the addition of the loop.

The problem of Calculating the potentiaI and velocity
field associated with the trailing-vortex loop has already been
considered for the subsonic speed range by hm~x, Heaslet,
and Fuller in reference 24. It is a relatively simple matter to
extend these results to the supersonic range, and since the
procedure for doing so is plainly developed in reference 24,
only the fial results that are of interest here will be giveD.
Thus, for the regions marked I, II, III in figure 49, the
normal velocity w induced in the plane of the vortices by the
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addition of the trailing vortex-loop is given by:

(62)

Several points of interest maybe deduced from inspection of
“ equation (62). First note that, as it should, the solution
reduce9 to the two-dimensional normal velocity with just a

.(
change in sign along the lefkhand boundary y= —~=,

M -(%%$’’-)’)t>z>—A y=

(and to zero along the righbhand boundary y= +1=,

f+w)t>z>–+ y=+ ~ ),g>z>–fMJ .

Second, it appears that the contribution to the normal
velocity made by the trailing-vortex loop may be viewed as
being composed of two distinct parts: one, a twodimensional
contribution, equal but opposite in sign to the normal velocity
contribution of the original twodimensional system and
e.sisting everywhere within the region y SO, —t<z<t, and
second, a thre’edimensional contribution that is antisym-
metric with respect to the axis y=O and that exists only
within the confinesof the starting sound wave and Mach line
traces, that is, within the shaded region of figure 49. It
should be noted that the antisymrnetric contribution is zero
along both the left-hand and righkhand boundaries, and
contains no singularities other than at y=O, x<O, the path
of the trailing vortex itself.

In order to obtain the normal-velocity distribution due to
the complete vortex loop, it is now only necessary to combine
the results given by equation (62) with the two-dimensioned
contribu~ion (eq. (35)), and with the contribution of the
trailing-vortex loop originating at y=s (see fig. 48). How-
ever, we are inter&ed in the effect of this complete loop on
the lift at the tail and, inasmuch as the r=ponse to the two-
dimensional vortex system has already been investigated in
previous sections, it is more to the point simply to continue
by investigating separately the effect on the tail of only one
trailing-vortex loop. The rcmdting solution for tail lift re-
sponse can then be doubled to account for the intluence of
both trailing-vortex loops, and directly added to the result
found previously for the response to the two-dimensional
vor~Y system. -

RESPONSE IN LIFT OF TNL TO NORMAL VELOCITY OF TRNUNQ-VOItTEX
LOOP

In tie~ of the complicated nature of the flow caused by
the trailing-vortex loop, it appears that analyses loading to
exact solutions for general tail plan forms will be confronted
by formidable difficulties. Thus, for practical purposes,
simplifying approximations will no doubt become necessary.
There is one type of plan form, however, which can bo
treated with a minimum of approximation and that is a
elms of superwmic-edged wings. It has already been men-
tioned in a previous section that for the supersonic-edged
plan form having a straight trailing edge normal to the free-
stream direction, the use of strip theory is erect in calcula-
tions for the lift due to arbitrmy deformations of tho surface.
Hence, for this type of plan form one can calculate the lift
at a given spamvise station as though the station wero a
two-dimensional surface undergoing the same motion. Tho
reduction of the problem to one involving only two spatial
dimensions then opens the way for use of the threo-dimon-
sional steady-flow analogy to solve the problem in the samo
manner as was done previously for the responm of tlm
two-dimensional tail to the two-dimensional vortm system.

As an illustration of the use of these principles, wo con-
sider two cases involving the response of o tail of triangular
plan form; tit to a vortex system having a span gmator
than, and second a span 1sssthan the span of the tail.

Case 1; 2mco<8.—

Referring to the notation of figure 50, lot us fix attention
to a spanwise station y, and examine the normal velocity
distribution encountered by chord cl(y) of the tail as it pmsea
through the region of disturbed flow caused by the lofbhand
trailing-vortex loop. For the particular chord chosen, tho
geometry of its experience in time and space is illustrated
in figure 51.
As seen on the figure, in virtue of fixing y, the boundaries
of the sound wave appear as one branch of a hyperboln.
Within the hyperbola, the flow is of the type defined by
w(I) of equation (62); whereas to the left of tho hyperbola
but within the trace z=9y–MJ, the flow is constant olong
lines parallel to the leading edge of the section, being of
type ICC of equation (62). Elsewhere, tho flow is zero.
ATOW,in view of the validity of the strip-theory formulation
we consider the chord c1(y) as being the chord of a tAvo-
dimensional tail, subjected to the normal-velocity distribu-
tion W(Z, 4 y), where y is treded as a constant, Then,
invoking tie threedimensional steady-state analogy, the
problem is to find the steady-state section lift as n function
of t (the coordinate t is now the streamwise axis) on the
equivalent sweptback tail shown in figure 51, which is sub-
jected within the shaded boundaries to a normal-velocity
distribution given by equation (62).

Up to this point, the formulation of the problem has
involved no approximations. Now, however, rather than
attempt to solve the above problem exactly (which is in
truth even now a formidable exercise in integration) we
introduce a simplifying approximation based on the nntum
of the normal-velocity distribution. It has been mentioned
that the antisfietric part of the normal velocity caused
by the trailing-vortex loop contains no singularities other
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FIGURE 50.—Deflnition of notation used in calcul’atlng section lift

response to normal velooi~ of trailing vortex loop.
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FIGIJICJ61.—Boundary conditions at a spanwisesection of the tail.

tlmn those on the path of the trailing vortex itself. It can
also be mid that with respect to m observer moving with the
chord c1(y) the magnitude of the antisymmetric flow grows
uniformly from zero ot one boundary of the sound wave
to the steady-state vrdue at the other boundary. These
statements me illustrated in figure 52 for the region in z,
t, occupied by the tail chord cl(y) of &ure 51.
Thus, from inspection of figure 52 it can also be stated that
the response in lift c1(l+$I(y), cl(y), i!) must start from zero
at time tl(y) (see fig. 51), and also grow uniformly to its
steady-state vrdue, which is attained at time tJy). More-
over, it cm be shown that if w is conttiuous along lines

FI~&E 52.—Normal velooity distribution due to trailing vortex loop
at a spanwisestation of the tail.

parallel to the leading edge the slope of the response curve
must be zero at both times tl and G.

The steady state lift Zl(l+tl(y), cl(y)) which is attained at
time h can be computed exactly, and the times tl and & are
obtained easily from the geometry of figure (51). It there-
fore seems reasonable simply to approximate the response
curve by a variation that grows uniformly with time and .
fits the end conditions correctly in magnitude and slope.
One such curve can be written in the form of a cubic equation
in t, and gives,

Cl(z+fl(y),cl(y ),t)=

t–t,(y)
;l(l+glQ/),cl(Y)) [h@)—tI@)

T{3-LJ%?J} ‘m

where, for the conditions of figure (51),

.3(z+tl(j),Cl(?d)=-v;lb) :!.
{

— /(l+co)’–fl%&

The forin of equation (63) can be viewed as being typical
of the response of any section c(y) of the tail. However, as y
takes on all value-sfrom one tip to the other, the equations for
G,h, and ;Z may change from type to type in cli.flerent span-
tise intervals, depending on the Mach number and con-
figuration geometry under consideration. Referring, for
example, to figure 50, it is clear that a section of the tail near
the right-hand tip may be completely untouched by the
normal velocity caused by the trailing vortex; whereas sec-
tions closer inboard may be touched on only a portion of
their length. All told, there are five such possible variations
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in the boundmy conditions and these me listed in Appendix
D, together with the corresponding valuea of tl ,h, and ZI.

Having determined an expression for the response in lift
at an arbitrary section of the tail, we may now integrate
and find the combined response of all sections of the tail to
the given normal-velocity distribution. Thus, in a manner
similar to that described previously in comection with c-al-
culations for the response to the two-dimensional vortex
pattern, we may write, for the rwponse to one trailing vortmj

{

mo,+R

c.(t)=+ J--R Cl(y)cl(l+fl(y),cl(y),oczy+

where the symbols in equation (64) have been defined in
figure (50). In order to illustrate the nature of the result for
the re9ponse in lift to the trailing-vortex loop, calculations
based on equations (63) and (64) have been carried out for
the triangular tail shown on the side of figure 53. The
results account for the effects of both exterior trailing-vortex
loops and may be directly added to the response to the two-
dimensional vortex system to give the response to the chm-
plete loop shown in figure 53. The separate responses and
their combination are shown for comparison on figure 53.

II \~ —_/ ---
~%talresponse:mYzEz2m

I 2 3 4 5 6
t .

FIciunE 63.-Rqxmse in lift of tide triangular tail of espect ratio
4 k normal velocity of complete vortes loop. ~.= 1.7.

Case 2: 2mG>8.—
When the span of the trailing vortices is smaller than that

of the tail, the development outlined above must be amended
slightly. The effect of the antisymmetric part of the normal
velocitydistribution may be accounted for, however, by the
same technique as described previoudy, and referring to
figure 54 for definition of the notation, the response in lift of
the tail to this contribution may be written immediately as,

where the variation CJ(t+~(y), c(y) ,t) is again given by
equation (63).
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FIGURE64.—DeiMtion of notation used in calculating seotion IIft
r-ewom.eto normal velocity of trailing vortex loop.

Now, it is also necessary to consider the influence of the two-
dimensional contribution to the normal velocity which exists
in the region y<O, —t<z< +t. But note, the responm in
lift of the tail .tq this contribution is simply equivalent to
minus one half the rwponse of a triangular tail of chord
R
; and tail length l+co—~ to the two-dimensional vortex

pattern, and, inasmuch as the exact result for this cam ha
been obtained in a previous section, it is sufficient to indicate
the result in coefficient form aa

where the subscript 2 indicatea that the response to the two-
dimensional vortex pattern is to be taken. The sum of
equations (65) and (66) then gives the total reaponae of the
tail to one trailing-vortex loop. To obtain the response to
the complete vortex loop, this result is then doubled and
added to the response to the two-dimensional pattern in tlm
same manner as was done for caae 1.

SUPERPOSITION OF ELEMJ3NTARY SOLUTIONS

Finally, having obtained a solution for the lift at the toil
induced by the normal-velocity distribution of tho complete
vortex loop, we wish now to use the solution to build up tho
response to the dowmvash caused by a threedimeusional
forward wing. The analysis for accomplishing, this task
closely parallels that described previously for the case of tlm
two-dimensional forward wing, and therefore only tlm final
result will be given here. Thus, denoting the elementary
solution by Cl(P,qt); where P is the distance from a moving
vortex to the tail leading edge rmd s is the mmispan of Lho
vortex loop, we get, (see figure (55) for definition of nototion) .
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FIQUIIE 55.—Definition of notation used in calculating response in lift
of tail to prescribed A@ distribution on three-dimensional forward
wing.

As in the twodimmsional case, the fit term in equation (67)
nccounts for the variation of A* on the wing, the second,
for the variation in the wake. It is to be noted that in the
development leading to equation (67) it is assumed that the
trailing edge of the forward wing is straight and normal to
the free-stream direction. However, wings having. other
than straight trailing edges can be treated by the same
equation by considering as part of the wing points in the
wake between the ‘wing trailing edge and the rearmost
spnnwise ask passing through the wing. .

APPLICATION OF REVERSE FLOW THEOREM

We have devoted several sections to the derivation of
methods whereby the tail lift response can be calculated for
certain restricted eases. The possibility still exists,however,
that these results can be extended to include still other cases
which do not lend themselves as readily to analysis. The
question may be asked, for instance, whether a relationship
mists between the response in lift at the tail to the essentially
twodimensional normal-velocity field shed by a large-pan
rectangular wing and the analytically more dficult reverse
situaLion; that is, the effect of a small-pan forward wing of
fairly general plan form (for which the downwaah field is far
from being twodimensional) on a large-span rectangular
tail. Such a relationship can be sought for the more general
cnse, involving wing-tail configurations of arbitrary size and
shape, by application of the reverse-flow theorems for un-
steady motion developed in reference 27. It will be the pur-
pose of this section to investigate this possibility.

To begin, we adopt the notation used in reference 27 and
also specify that the motion of the wing-tail combination be
imlicial; that is, the combination is made to start from rest
at t= Owith uniform velocity VOin forward and reverse mo-

tion, and boundary conditions for the flow over the surfaces
are specified only for t>O, being zero for t<O. After the
combination has moved for a time T in both forward and
reveme directions, the relationship of the wings and their
respective coordinate systems are as shown in figure 56.

t;

FIQURD56.—Coordinate systemsin forward and reversemotion.

In figure 56, the subscript 1 denotes the axis system in for-
ward motion, the subscript 2, the axis system in reverse
motion, and the wing, wake, and tail have been given the
symbols a, b, and c, respectively. As may be ve~ed
horn examination of the @e, the z and t axes are related
by the equalities,

X2=-X1 +{-lMOT
t2=-t,+T }

(6s)

and we further specify that y2= —yl. The general revm~
theorem may then be written in the form (see again, ref. 27),

Pbl (Zl,!k ‘I)ab,(%!h, tI)+pc, (%?h, tl)=c, (%,Y1,t])] d%dYI=

Gssp,(t,)
bq(%,Y2,t2)=a,(%, Y2, Q+

pb,(%yz, ts)@,(%Y2, @ +PC,(%Y2,tS)75c,(%Y2,4)1d@?h (69)

where ~ is the plan form of the combination in the z= O
plane. It may be noted the normal-velocity functions,
fit,, Dt, are implicitly dependent on T, the full relationship
being,

~i$(%lh, tl)=wi2(—zl+f—.ii. T,-yl, -tI+ T)
}

(7’0)

i=a, b, c J

Notice further that, since the wake cannot sustain a pressure
~erence, the products pb,~,, and p,,%, in equation (69)
may be set to zero. Then taking a derivative with respect
to T of both sidw’ of equation (69), we get,
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It is easily verified that a sufficient condition for the disap-
peararw of the triple integrals in equation (71) is that the
normal-velocity distributions on the surfaces be restricted to
those deiined by the relations,

WI (Zl,tl ; yl) =f(zl+i’wtl ; Y1)

(72)
%(%’2; Y2)=9(G+W% YJ

Another such condition is simply that uh=O, or w,=O.
Assuming henceforth that either or both of these conditions
are in force, the flow revemal relationship for the wing-tail
combination becomes,

SS
P.@/1, n@&%Yl, Ofdyl

Pq (T)

JJ

(73]
= PU,(W9, XE7.,(%Y2, Tk%#fY2+

Now in the present problem, the boundary conditions for the
flow on the wing and tail are simply that in forward motion
the normal.velocity on the forward wing is uniform while on
the tail it is zero, and in reverse flow we specify that the same
situation be true. Obviously, these conditions satisfy the
restrictions imposed by equation (72), and setting ?Z=Iand
~% equal to unity, equation (73) becomes,

SS
PO1(%Y1, TkwYl=

SS
PU&%Y2,ZMdYi (74)

Pq (T) PCS(T)

Thus, the response in lift induced on the tail by the
indicial change in angle of attack of the wing is exactly the
same as the lift response of the wing due to indicial change in
mgle of attack of the tail in reverse motion. It will be noted
that the above result applies for wing-tail combinations
flying at either subsonic or supersonic speeds, and that no
restriction has been placed on size or shape of the plan forms.

(71)

APPLICATION OF RESULTS TO DYNAMIC STABILITY
ANALYSIS

The preceding sections have been concerned with the
development of methods whereby the variation with time of
the lift developed at the tail in reaction to the normal
velbcity shed by a forward wing could be estimated. Now,
having arrived- at a fairly rigorous physical understanding of
the nature of the variation, we will attempt in this section to
assess the signiflcwce of itx contribution to the over-all
dynamic stability of an aircraft. l?or simplicity, attention
is devoted to the single-degree-of-freedom rotary-oscillation
case.

It has been noted that the oscillatory lift and momont
equations developed previously for a single wing are still
applicable for the wing-tail case with proper interpretation
of the indicial functions. For supemonic speeds, this re-
definition was seen to reduce for each indicial function simply
to the sum of the indicial functions of the wing and tail
considered as isolated wings and an interference function
which accounts for the Muence of vorticity shed by the
wing on the development of lift at the tail. Then, denoting
the interference functions by priined quantities, we conform
to the notatiomused in Part I by letting

cl(7)= G=(t:)–F;(T)

C:=(T)= Cm=(t:)–F;(T)

G@(T)=qt:)-3’j(T)

a=a(r)= Q:) –.F;(T)
}

(76)

Again introduce the parameters,
.

2V0
Q=y T . number of half M. A. C. lengths trovelod in

time r

*2
reduced frequency

2V0 ,
c ‘“

~:=: number of half M. A. C. lengths for inter-
ference function to reach steady-state,

where the characteristic unit of length E is taken as the wing
M. A. C. The in-phase and ou~of-phase lift and moment
coeilicients for the harmonic rotary-oscillation cam then
follow directly from the form of equations 12 and 14.
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‘po(~)=cL=.(uaw)+cLa=(u%)+Ga(uJ-

k
J

~ [F,w(q)+T,T(p)+F;(q)] s~ kw%+
o

p
J

< [F,Jo)+.F,T(P)+. F;(W)] KM kp&
o

G =k C.,j’aw
(){ t

(76)
I,P. )+cLaT(uq)+~a(u&

a

‘p. (+)=c.%(u..)+c.a=(”%) +~.(”~-

Tn the same way, the reduction of the above results for
k<l to fit-order in frequency follows directly from the
form of equations (13) and (15). There resnlts,l’

(79)

With the aid of the fit order in frequency results (eq.
(79)) it is possible to assess the importance of interference
effects on the damping moment of a wing-tail combi,lation.
Inspection of equation (79) for the out-of-phase pitching
moment reveals that the interference effects me contained

in the term U&fl(uj)and the integral, — r .( )dw me‘% q.
Jo

ItIt IS~~d III ~mtbm (75) tO (79) thatauofthe mffklon~ have hem nondhm.n-
dodlwd witk respect to tlm mme clmacterktio area and length.

8t18555-6~7

term C~Ju~) is generally relatively small, and may be
approximated by replacing the steady nonuniform dowmvash
at the tail caused by the pitching veloci@ of the wing by an
appropriately averaged effective angle of attack at the
tail. The term C~Q(uJ)may then be related to Cmw(u%)
by the expression,

(80)

Go
The dowmvash function ~ has been plotted for certain cases

in reference 28. For oti-er cases, R;bner indicates m refer-
ence 29 that a generally suitable expression in terms of the

more fully investigahd quantity ~ is

~ c%(%) %=
2 #= CL%(aCw)avo

Thus, combining equations (80) and (81),

(81)

%.(%) w[1C:,(U2 = q“%.) C.%(U=”) * (82)

For pitching in the positive sense the effective angle of
attack at the tail will in most case-sbe increased, so that
equation (82) represents a small but stabilizing damping
moment.

Consider now the term —
J

“:F,(P) dp. For =es of rota-

tion well ahead of tha tail, the”form of the pitching moment
ly

variation C:=(W) will vary closely as% ~La(@), whare &

may be taken as the distanc~ from the steady-state center
of pressure of the tail to the axis of rotation. Then, recalling
the general nature of the curves found for tail lift in previous
sections, a typical variation @.=(p) can be draw-nas shown
in figure (57).

G-%’(+)

‘#

FIQURE57.—TyPi@ response in Pitohing moment of tail to step
ohangein angle of attaok of wing.

The term–
J

“: F~(w)dP is then. seen to be equivalent to

the net shad~d area in figure (57). I?lainly, it can be of
significant magnitude, and since the steady-skte ordinate
C~=(Uj) will most generally be positive, it represents a
potentially large stabilizing damping moment.

It is interesting to compare the interference damping
moment given by other theories in terms of the result given
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by the integral
J

“: E (q)dp. Most of these theories (c. f., refs.

12, 28, and 10)0me similar in that they recognize that an
out-of-phase lift at the tail is caused by the fact that a
finite time is required for the normal velocity shed by the
wing to reach the tail. The normal velocity at the tail,
which is usually taken to be the normal velocity in steady
flow, is then usually averaged to form an @~ctivxa angle of
attack, and the damping moment cast in a form which may

be represented in the present notation as-~ ~Vd21’ ~ C.q (@.

Now this result may also be interpreted as an area, being
in fact the area of a rectangle having as ordinate the quan-

tity—se Cm==(o-J. But note that this ordinate is eqmil to

the ordinate C~=(Uj)in figure 57. Thus, it can be said
that the classical “lag in dowmvash factor” is essentially
correct but depends for its accuracy almost entirely on the

proper choice of the effective tail leggtb ~“ In reference

12, the length 1’ is chosen to be the mean distance between
the tail and the wing. Thus, for rectangular plan forms,

and in the notation of figure 34, the effektive length $ is

cw+cT+2~ The damping moment is then equal toz

–~ Cma= ~+CT+2~
E )

z and its equivalent area is com-

S

,- .

pared with-the area ‘“ F~(P)dP in figure 58.
0

cm.’(+)‘t

J
,/

FIQUSE58.—Com@son of area ● F;(#)@ with clmxskal lag-in-

downmw~ factor.
. . .

Itcan be seen from examination of figure 58 that the simple
representation of the tail length is in this case surprisiiy

21’
accurate, since the length ~ is so situated that the area

marked u representing a stabilizing contribu~on is in large
part canceled by the destabilizing contribution, area b.
Further, it may be argued that this will be true for a large
number of cases. The reaSoning is as follows: Referring to
figure 58, we see that the use of the simple tail length”ti
be essentially correct so long as the number of half-choni

lengths $ is close to the value of p at which the pitching-

moment variation changes sign, for then the areas a and 13

tend to cancel. But the pitching moment will be neor
zero when the tail is so situated in the normal velocity field
fkom the wing that it experience equal amounts of upwash
and dowmvaah over its surface. Reference to figure 69
shows that this will occur when the tail is approxinmtoly
midway between the starting vortices from the wing leacl-
ing and trailing edges.

x

FIGURE59.-Sketch showiog time at whioh tail oxperhmces npproxl-
mately equal amounts of upwaahand downwssh.

The time ~ when this occurs may be calculated to be

(. ‘w ‘)
;’ =~o f%+ z ~ and, after converting to hrdf-chords

(
2~+cw+cr

of travel, we get w=
E )

~which is just the wdue

of the effective tail length, ~.

It should be remarked that the above conclusion regarding
the validity of the “lag-indowmvash” factor diflers somewhat
from that of Martin, Diederich, and Bobbitt (ref. 28).
These authom treat severalwing-tail cases by direct considera-
tion of the effect on the lift at the tail of the downwash shed
by a forward wing which is plunging downward with uni-
form acceleration &V.. For values of pz u:, their results for
cL~T ~d Cm&T due to interference should therefore bo

. ..,

equivalent ta those of this report for the nreas —
J

%; (p)&
o

and —
J

‘:F~ (p)&. It is found in reference 28 on compnr-
0

ison of some of the results with those derived from the
simpler lag-indowmvash theory that the latter theory
generally gives accurate results when the axis of rotation is
near the wing centroid of area. On examination of the
equations used for the simplified theory in reference 28,
however, it is noted that the effective tail length (denoted’
1’ in this paper) is taken to be the distance between the tmil
center of pressure and the axis of rotation, which we have
called I?T. ,With this representation, the out-of-phase tail,
lift and moment coefficients due to interference may be
written (in the notation of this paper) as,
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whereas, by the results of the present analysis, they m-e, I

Tho two sets of expressions agree when 1’ and 1, we equal,
and, as noted in reference 28, the simple theory gives good.
results for just the conditions corresponding to this mae.
For other cases, however, it is believed that equations (84)
am more representative of the physical situation, and should
oxtend the range of validity of the simple theory beyond
tlmt indicated in referenca 28.

Another case is pointed out in reference 28 fo~ which the
simple theory breaks dQwn, that is, when the forward wing
is two-dimensional, or of large, span. The results of this
analysis tend to coniirm this conclusion, since for the large-
span wing, the dowmvash in steady flmv is near zero. Cor-
respondingly”, the steady-tate interference lift of the tail
is near zero, which means that the relative magnitudes of the
peaks of the detailed indicial response curve (which are
ignored in the simple theory) play a ,prominent role in

J
deterrniniqgthe magnitude of the area “al’j (P)dp:

o

\

PART III

EFFECT OF NONLINEARITIES

In this final section we depart from discussion of the use of
the indicial-function concept in dynamic-tability analyses
to consider a problem which may have pertinence to per-
formance characteristics under certain nonlinear flow con-
ditions. The problem is: given a flight condition in which
the variation of the airfoil’s static restoring moment is non-
linear with respect to the angle of attack, what effect has
the nonlinearity on the rotary damping-moment coefficient?
The question is of especial pertinence to dynamic~tability
problems of aircraft operating under separated-flow condi-
tions, since it is well lmown that one effect of flow sepmation
is often to cause significant departures fkom linearity of the
wtatic-restoring-moment curve. A common type of non-
linear pitching-moment variation is that shown by the family
of curves in figure 60, and it is this type which will be con-
sidered here.

cm

\ It

.b

FIGURE 60.—Fadly of nordinear statio pitok.ing-rnoment curv=

In order to attack the problem, we again fiequire that the
plunging velocity of the aircraft center of gravity be zero and,
furthermore, assume that the nonlinem restoring moment
is n function only of the inakmtmeow angle of attack. The
characteristic differential equation governing the motion may
then be written as,

~ti+~(~, ci)&+K(cZ)CZ=O (85)

where I is the moment of inertia, ~(a, &) represents the damp-
ing coefficient as a nonlinear function of angle of attack and
angular velocity, and K(a) k the restoring-moment coefficient
as a nonlinem function of angle of attack.

~ext, we contend that the departures fium linearity of the
restoring moment curves ~(a) are caused primarily by flow
separation, so that in the absence of separation the curves
would be nemly linear. b any case, however, a given
restoring-moment variation can be broken into two parts;
one linear, and given, say, by the results of linearized-flow
theory, the other, a nonlinesx vmiation of such maggtude
as to combine with the linear mxiation to give the observed
curve. These statements are illustrated in ilgure 61.

7

variatica (b)

F(c)

l?muan 61.—Breakdown of pitohing-moment
nonlinear components.

\

\
curve into linear and

It must be noted that the restoring-moment curves shown
in fi~”es 60 and 61 are presumed to be taken from the
results of static wind-tunnel measurements, where the angle
of attack is simply the angle between the chord-plane of
the wing and the ihe-stream direction. When the wing is
oscillating,however, each point fmeasureclfiom the axis of ro-

tation experiencesan additional angle of attack ~~ due to the
o

angular velocitf. Then if the steady-state pitci&g-moment
variation presumed to be caused by flow separation (curve
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(c)infigur:61)isapproximated in the operating angleaf-
attrtckrange by,

C.(a) =aa–tJ~

in the unsteady case jt is
.

(86)qa+g)=a(~+;)- ~(a+$y
0

where now f is assumed to be the distance ilom the axis to
the point ‘at which the additional lift due to separation is

concentrated. Now, since for slow frequencies, @ is much
) v.
smaller than a, all but first-order terms in & are neglected,
so that equation (86) becomes

Cm=a(a–&&)~ (a–3i@l (87)

The characteristic equation of motion then becomes

[
~a–$o(G,+C=J +$(a–s ~d]–a[Cm=+(a–bc+)]=O

(88)

where (C.q+ Cm) and (CJ are the (constant) qtability
derivatives which would be present alone in the absence of
separation. Thus it appeam that even if the nonlinear@ in
the static restoring moment is of small magnitude, neverthe-

less the possibili~ still remains that the damping momcmt
can be profoundly ailected in the event that (O.a+ C.J is

sticiently small. Notice that when (C=c+ OJ +% is

greater than zero, and if the nonlinear term in the restoring
moment can be ignored in equation (88), that equation then
takes on the form,

&—2&c(l —pd)+K%=o (8Q

Equation (89) is then recognized aa being the well-known
Van Der Pol equation of nordinear mechanim. It is evident
that for small values of a the damping term is negative, lead-
ing to a divergent oscillation, whereas for larger a the damp-
ing term is positive. A stable regime therefore will exist

near a=~ and oscillations of either large or small ampli-
+F’

tude will converge to that regime,
Hence, the remdt of this analysis would appear to indimta

that nonlintitie9 in the vmiation of restoring moment with
angle of attack of the type shown in figure 60 may have the
effect of promoting self~ustained rotary oscillations of small
amplitude in cases where the damping moment exiting
under unsepmated flow conditions is small.

&s AERONAUTICALLABOR.4T01ZY
NATIONALADVISORYCOMMITTEEFOEAERONAUTIIJS

Mommmr FmLD, CALIF.,Aug. 16, 1954

●



APPENDIX A

RESPONSEIN LIFY OF T~O-DIMENSIONALTAIL TO TJvO-DIMENSIONALVORTEXSYSTEM

Tlm results for the section lift response to the two-dirnen-
sionnl vortex field me listed below, together with the limits
of the intervals of “time” t within which the results are.
applicable. The intervals have been illustrated graphically
in figure 38 of the text.

Intmwll 1,
1 l+c

Mo+l= M+l

+“-{-k’”’r+m-
+N’+@a+cOs-’R9}”

l+c
Interval 2, —

M,+] ‘t< ~+J-
ikfo+l M.–1

4(1, c, t)=cli~z’ o
c1

u –-b%l’”’au

Interval 3,
1

~*~c.l%&l

iicos-t%a-cos-’(’”l-

l+c
Interval 5, — — —

i&+M:+l ‘t< ~–l

>(’c~=’o-+)+”{+’ogtim+

where

and

&’s-’cH3-c0s-”K+
J:”’&-I:”@

J-
“=(ZQZ+MO)cOs-l(–q)

( ,’7l+aq+J=7 l—a’
112=(a+1M)@ a+ ~

(a+JO(MJ-c)-iWq=
(a+A4Jt-1

‘=(l+M) (1–Mut)+JLc
t(l+Mo)—c

~,=(l–M.) (Z-M.t)-fMuc
t(l–i%l!J+c

2A+
——

- #v&

These results may be transformed in terms of either true
time t’ or number of half-chord lengths of travel p by the

substitutions t= a# or t=~~ respectively. .
0
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APPENDIX B

RESPONSE IN LIFTOF TWO-DIMENSIONAL, RECTANGULAR, AND WIDE TRIANGULAR TAILSTO TWO-DIMENSIONAL
SYSTEM—GUST ANALYSIS

Appro.simate solutions for the responses of two-dimension-
rd, rectangular, and wide triangular tails are listed below.
Solutions were obtained by means of a gust type analysis,
e..Tlained in the text. The indickd gust functions used in
the rmdysis are those obtained from references 3, 5, and 6.

T~O-DIMENSIONALTAIL
1

Interval 1, — l-l-c .
&to+l ‘t< 34+1

> (z,t)=ii(z,t)

Interval 2, ~ —
ilJ&+l ‘t< M:+l++

J

MO t il!lQ,-c , (t–t,)’–[l–M#-t,)]~ ~tl

XcO’-’(T) ‘ Z-LW-G,-i-c
Afe+l

Interval 3, ~+~iwo+l MO-l ‘t

> (t,G,t)=K@, t)–K(z, T)–

where

a“r+FEFl+&’s-’(-3}
and

c 2A+
T=t—— ——

li+l’ . - #v&

RECTANGIJLAR TIP EEG1ONS

l+c
Interval 1, J- _MO+l<%M+l

> (l,t)=~(z, t)

Interval 2, &Kt2J-+J-
0 – –M+l 34.-1

(M*+l)
0% l,C,t)=r(l, O-T-#

Interval 3, ~+~i140+l k!%-l~t

$ (Z,CA=WJ+4+) w,7)-(+) w,d
732

VORTEX

and

*cos-l(Mo-~)-@.-y),/t2-(l-,,o,2]}

.——‘=t M:+1
——“=t M-–-l
2A@

“=#V&

The response for the rectangular tail may be formed by
direct addition of the solutions given above.

WE TRIANGULARTAIL

Interval 1,
1 l+CO

Mo+l%w+l

CL1t)=a(l,t)-+

l+% <~< 1 —
Interval 2, —

Mo+l – – .ii+l+f~c:l

Interval 3,

J

2iw X7%
% (J,co,t)=ac,t)—ti(l,T)+& * II dtl

.
tihere,

2“?;( )[”

l–lid
a(z,t)=~ ~

tz–(l–M~’_
0

& log
( , ;l+$Ecos-’ (’’’.-?)-
t+@-(z-MJ)2

]1–Mot

(~--)
‘ti #-(&M~)z

01 1}

‘=Fcos-’r%_cO)+
(c”-MJl)co&-’(&)14(t-t?:;!.;::y-’”]2

2A@——
“=t M:+l’ ==&7&o



APPE.NDE c
RESPONSEIN LET OF APEX-FORWARDAND APEX-REARWARDWIDE TRIANGULARTAILSTO T~O-DIMENSIONAL

SYSTEM
VORTEX

Exact solutions for tb6 responses of apm-forwmd and :
apex-rearward wide triangular tails are listed below. Solu-
tions were obtained by the application of strip theory.
The section-lift response used in the analysis has already
been presented as Appendix A.

APEX-REARWARD TRIANGULAR TAIL
,

Intcrvrd 1,
1 l+CO

Mo+lstsMo+l

l–Ngf

> (l,O=J ‘ ILdlz

1W. <t<_ —
Interval 2, —

M.+1 – ‘ti+l+it!&

Interval 3,
1

J-+A —il$+l M.-l ‘t SM.–l

where

4— l.ET 1—(22

[1‘=~a+fMo) co

,Ilqj .
IL -

a(a+f’o) ~ ‘“ ‘s-’ (–’J+J=I

[( n

l+ae1+JCi2 l—d +

“=(a+lMJ a’10g la+~l

J=2a
(a+Mo) Z Cos-’ (+]

and,
M.a-(a+MJc. “El=

a

a= (~+M;)t—1

al= a—cO

~=(l+MJ(l-MJ)+M~.
(l+MJt-co

(1–i&Q(l–2@-Mw.~1=
(1–MJ+c.

2A+
-dv&o

PL
The integral

J
=,”&da may be evaluated easily, and gives,

J [ (l+la~-pcOs-’EE%)+
a: IL&=fi –log

‘Ocos-’(a)lkm-”’’’04w9
MJ~+/31 COS-l 1(H)-~cOs-c

APEX-FORWARD TRIANGULAR TAIL

The form and intervals of the results for the apex-rearward
tail also apply to the apex-fo~rd tail. The terms II&
~1, L, are, of co@-se, diilerent, and these are listed below.

~=7r~ a—
a (a+MJ G

=,=_ R
[~ Cos-1 (— 61)+

a(a+MJ co

~ (a+M) log
( , -)1l+acl+ -I 1—612

c. ~ la+e~

{[
112= -(a;M1 1+

:(w)llo’c+a’+,iw%s}

J
Evaluation of ~; I@% gives,

J
% DW=G

[ (1+’-)+
MJ~=+(l-~Ut) log —w

%

)
pl cm-l (s II

%
–MJ cos-’ (a)

‘%
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APPENDIX D

BOUNDARY CONDITIONS AT THE TAIL DUE TO PENETRATION OF VELOCITY FIELD OF TRAILING-VORTEX

The boundary conditions at a spanwise section of the tail
due to the tail’s penetration of the normal-velooity field
created by a trailing-vortex loop are illustrated below-. The
five types of conditions are thoso possible at various seotions
of the tail due to its shape and its position with respect to
the moving and trailing vortices.

x=-J~27 0

/

./”

/

-—. —-—-—-—

— l<(y) +Cwi

Y

/2

~l=w+q+hw

&taz+t+c)+d(z+t+c) ’-i3%y
B’

[
4~ : J(l+g+c)’–w–i(l+t)’–w+

“(Q=-p 2w& y

)1
f?y(ws-’ &n3-’ l+y+c

case 2,

or

t
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SYSTEM

)1
PY(co:-’ &–coS-’ &c

Case 2(a),
l+E+c
~<y<y

7

tl=M&H+c)-J(l+t+ c)’-/9y

F’

4A@l
cl(k)= —~ 2T~& y

[
— - 4@+t+c)2–w–4@+E)2–Bv+

@(coS-’ &cos-’&)]

Cwm 3; 1+.$_< <Z+[+c
~ –Y.~

t
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tl=y

~=Mw+f+c)+4(l+E+ c) ’-w

P
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CJlse 4,

_. —.— —

[
4--=---~J(l+$+c)+?&–-py cm-’*]

“(Q= –p 2irv&‘y
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